$\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{Ru}_{4}(\mathrm{OAc}) \mathrm{Cl}, \quad 88968-54-1$; $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{Cl}_{2}, \quad 96615-09-7$; НОСНМе $2,67-63-0 ; \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}, 74-85-1 ; \mathrm{PhC} \mathrm{N}, 100-47-0 ; \mathrm{PMe}_{3}-d_{9}$, 22529-57-3; acetophenone, 98-86-2; p-cresol, 106-44-5; aniline, 62-53-3; di-p-tolylacetylene, 2789-88-0; benzaldehyde, 100-52-7; ethylene-1,1- d_{2}, 6755-54-0; styrene- $\beta, \beta-d_{2}, 934-85-0$; styrene- $\alpha, \alpha-d_{2}, 93185-51-4$.

Supplementary Material Available: Tables of general tem-
perature factor expressions (B^{\prime} s), positional parameters and their estimated standard deviations, and root mean square amplitudes of anisotropic displacements for 9 and 15 (4 pages). Ordering information is given on any current masthead page. Analogous data for the structure of 1 have been submitted as supplementary material with the previously published communication. ${ }^{8}$

Enantioselective Aldol Chemistry via Alkyl Enol Ethers. Scope of the Lewis Acid Catalyzed Condensation of Optically Active Trimethylsilyl and Methyl 2-[(E)-1-Alkenyloxy]ethanoates with Acetals

James A. Faunce, Bryan A. Grisso, and Peter B. Mackenzie*
Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208. Received October 4, 1990

Abstract

Optically active, mono- and disubstituted trimethylsilyl $2-[(E)-1-$ alkenyloxy $]$ ethanoates of the type $\mathrm{RR}^{1} \mathrm{CH}=$ $\mathrm{CHOCHR}^{2} \mathrm{CO}_{2} \mathrm{SiMe}_{3}\left(\mathrm{R}=\mathrm{Me}, \mathrm{PhCH}_{2}, n-\mathrm{Bu}, \mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}, \mathrm{PhSCH}_{2} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}^{2}=\mathrm{Me}, \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}\right)$ undergo highly diastereoselective, Lewis acid catalyzed reactions with aliphatic and aromatic acetals $\mathrm{R}^{3} \mathrm{CH}\left(\mathrm{OR}^{4}\right)_{2}\left(\mathrm{R}^{3}=\mathrm{H}, \mathrm{Me}, t-\mathrm{Bu}, \mathrm{Ph}\right.$; $\left.\mathrm{R}^{4}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ to afford cis-2-[RR $\left.{ }^{1} \mathrm{CH}\left(\mathrm{R}^{3} \mathrm{CHOR}^{4}\right)\right]-5-\mathrm{R}^{2}$-1,3-dioxolanones corresponding to erythro-diastereoselective aldol reactions involving net syn-periplanar addition of the acetal-derived electrophile and trimethylsilyl ester oxygen across the enol ether double bond. Analysis of the alcohols $\mathrm{RR}^{1} \mathrm{C}\left(\mathrm{R}^{3} \mathrm{CHOR}^{4}\right) \mathrm{CH}_{2} \mathrm{OH}$ obtained by reductive removal of the ethanoate auxiliary reveals the following points. (1) Enantiomeric excesses in the range $90-98 \%$ ee are possible with dimethyl and dibenzyl acetals derived from formaldehyde, acetaldehyde, pivalaldehyde, and benzaldehyde. (2) The aldol reactions are moderately to highly erythro diastereoselective (e/t=4:1-99:1), even when quaternary and tertiary centers are juxtaposed ($\mathrm{R}^{1}=\mathrm{Me}$; $\mathrm{e} / \mathrm{t}=13: 1-32: 1$). (3) The highest diastereoselectivities are observed with a bulky cyclohexyl substituent at the primary chiral center ($\mathrm{R}^{2}=\mathrm{Cy}$); however, diastereoselectivities as high as 88% ee are possible even with lactic acid derivatives ($\mathrm{R}^{2}=\mathrm{Me}$). (4) The enantiomeric excesses are catalyst dependent, with $\mathrm{Me}_{3} \mathrm{SiOTf}$ giving slightly better results than $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ in reactions with benzaldehyde dimethyl acetal but $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ giving much better results than $\mathrm{Me}_{3} \mathrm{SiOTf}$ in reactions with acetaldehyde dimethyl acetal. (5) Perhaps most notably, the diastereoselectivities are remarkably insensitive to changes in substitution at the nucleophilic enol ether carbon, so that essentially identical results are observed regardless of whether $\mathrm{R}=\mathrm{PhCH}_{2}$, $\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$, or PhSCH_{2} and regardless of whether $\mathrm{R}^{1}=\mathrm{H}$ or Me. Reaction of the symmetrically disubstituted enol ether $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHOCH}\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}\right) \mathrm{CO}_{2} \mathrm{SiMe}_{3}$ with $\mathrm{PhCH}(\mathrm{OMe})_{2}$ affords, after reduction with $\mathrm{LiAlH}_{4}, \mathrm{Me}_{2} \mathrm{C}(\mathrm{PhCHOMe}) \mathrm{CH}_{2} \mathrm{OH}$ of 94% ee. PhCHO and $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CHOCH}\left(\mathrm{c}_{\left.-\mathrm{C}_{6} \mathrm{H}_{11}\right) \mathrm{CO}_{2} \mathrm{SiMe}_{3} \text { undergo a similar reaction to afford, after aqueous workup }}\right.$ and reduction, threo $-\mathrm{PhCH}_{2} \mathrm{CH}(\mathrm{PhCHOH}) \mathrm{CH}_{2} \mathrm{OH}(\mathrm{e} / \mathrm{t}=1: 13 ; 98 \%$ ee $)$. The corresponding methyl ester, $\mathrm{PhCH} 2 \mathrm{CH}=$ $\mathrm{CHOCH}\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}\right) \mathrm{CO}_{2} \mathrm{Me}$, undergoes related aldol condensation/transacetalization chemistry upon reaction with the same acetals and $\mathrm{Me}_{3} \mathrm{SiOTf}$ to afford erythro $-\mathrm{PhCH}_{2} \mathrm{CH}\left(\mathrm{R}^{3} \mathrm{CHOR}^{4}\right) \mathrm{CH}\left(\mathrm{OR}^{4}\right)_{2}$ products in $61-86 \%$ nonoptimized yield, with erythro/threo ratios and enantiomeric excesses identical with those observed for the corresponding trimethylsilyl ester reaction products.

Introduction

Enantioselective aldol reactions ${ }^{1-6}$ are among the most powerful and versatile means of introducing stereochemistry and func-

[^0]tionality in organic synthesis. A variety of metal enolate, ${ }^{2}$ metalloid enolate, ${ }^{3}$ allylborane, ${ }^{4}$ allylboronic ester, ${ }^{5}$ and other methods ${ }^{6}$ have been developed for this purpose; we report herein the first alkyl enol ether based approach, ${ }^{7}$ involving the Lewis acid catalyzed condensation of acetals with optically active trimethylsilyl and methyl $2-\left[(E)-1\right.$-alkenyloxy]ethanoates. ${ }^{8}$ Our interest in these reactions was stimulated, initially, by the ready availability of optically active $2-[(E)-1$-alkenyloxy]ethanoic acid esters ${ }^{9,10}$ and, subsequently, by the potential of these enol ethers to undergo reactions analogous to the Lewis acid catalyzed reactions of silyl enol ethers with acetals ${ }^{11}$ (eq 1).

In particular, we speculated that trimethylsilyl $2-[(E)-1$-alkenyloxylethanoates would undergo oxocarbenium ion induced cyclization to give a charged intermediate, which would lose a trimethylsilyl cation from oxygen to afford a neutral, protected aldol product (eq 2).
(7) For a recent paper on the Lewis acid catalyzed condensation of (achiral) alkyl enol ethers with acetals, see: Mukaiyama, T.; Matsui, S.; Kashiwagi, K. Chem. Lell. 1989, 993.
(8) A preliminary account of this work has been published: Faunce, J. A.; Friebe, T. L.; Grisso, B. A.; Losey, E. N.; Sabat, M.; Mackenzie, P. B. J. Am. Chem. Soc. 1989, 111, 4508.
(9) Krysan, D. J.; Mackenzie, P. B. J. Am. Chem. Soc. 1988, 110, 6273. (10) Johnson, J. R.; Friebe, T. L.; Krysan, D. J.; Sabat, M.; Mackenzie, P. B., unpublished results.
(11) Murata, S.; Suzuki, M.; Noyori, R. Tetrahedron 1988, 44, 4259.

By loose analogy with iodolactonization chemistry, ${ }^{12}$ we reasoned that oxocarbenium ion attack and cyclization might be concerted ${ }^{13}$ and involve antiperiplanar addition across the enol ether double bond, so that ring conformational preferences associated with the nascent dioxolanone ring would correlate the stereochemistry at $C(5)$ with that at $C(2)$, which would, in turn, be correlated with that at $\mathrm{C}(\alpha)$ (cf. eq 2). Given control of stereochemistry at $\mathrm{C}(\alpha)$, we anticipated that Coulombic and steric effects analogous to those responsible for the erythro diastereoselectivity of the corresponding silyl enol ether reaction would correlate the stereochemistry at $\mathrm{C}(\beta)$ with that at $\mathrm{C}(\alpha)$. In the event, successful reactions are observed but give rise to erythro aldol products corresponding to (net) syn-periplanar addition across the enol ether double bond. We describe herein the scope and limitations of these reactions; studies of the reaction mechanism are in progress and will be the subject of a future report. ${ }^{14}$

Starting Materials

As will be discussed in more detail elsewhere, ${ }^{9,10}$ the enol ether starting materials were prepared via (a) initial condensation of acrolein or methacrolein with commercially available (S)-lactic acid or (R) - or (S)-hexahydromandelic acid to afford the corresponding 2 -ethenyl-1,3-dioxolanones 1a-d in 21-86\% yield (Scheme I), followed by (b) nickel- or palladium-catalyzed conjugate addition of organotin or organoborate nucleophiles, ${ }^{10}$ by (c) (stoichiometric) nickel-mediated coupling reactions with halocarbon electrophiles ${ }^{9}$ and organometallic nucleophiles, ${ }^{10}$ or by (d) Lewis acid catalyzed conjugate addition of trimethylsilylketene acetals or $\mathrm{PhSSiMe}_{3}{ }^{15}$ to afford optically active, mono-
(12) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry. Part B, 2nd ed.; Plenum Press: New York, 1983; p 152 and references listed therein.
(13) Factors that should tend to favor a concerted (albeit presumably highly nonsynchronous) mechanism include (1) the electron-withdrawing nature of the $\mathrm{CHR}^{2} \mathrm{CO}_{2} \mathrm{SiMe}_{3}$ group, which should destabilize a RCH$\left(\mathrm{R}^{3} \mathrm{CHOR}^{4}\right) \mathrm{CH}=\mathrm{O}^{+} \mathrm{CHR}^{2} \mathrm{CO}_{2} \mathrm{SiMe}_{3}$ oxocarbenium ion intermediate in a stepwise mechanism, (2) dipole-dipole interactions between the incipient oxocarbenium ion and the pendant trimethylsilyl ester, which should tend to hold the ester carbonyl oxygen near the oxocarbenium ion carbon in the transition state, and (3) the relatively limited conformational mobility of the pendant trimethylsilyl ester side chain, the flexibility of which should be diminished by virtue of restricted rotation about the RCHCH$\mathrm{OCHR}^{2} \mathrm{CO}_{2} \mathrm{SiMe}_{3}$ bond, arising from oxygen to carbon electron donation in the transition state (i.e., partial oxocarbenium ion character), and by the tendency of 2 -alkoxyethanoates to adopt a conformation in which the alkoxy oxygen to $\mathrm{C}(2)$ bond lies in the plane of the ester: Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370.
(14) Faunce, J. A.; Grisso, B. A.; Mackenzie, P. B., manuscript in preparation.

Scheme I ${ }^{a}$

${ }^{a} \mathrm{Cy}=$ cyclohexyl. (a) $1 \mathrm{~mol} \% \mathrm{TsOH} .1 \mathrm{a}: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Cy}, 86 \%$. 1b: $R^{1}=H, R^{2}=\mathrm{Me}, 34 \%$. 1c: $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Cy}, 80 \%$. $1 \mathrm{~d}: \mathrm{R}^{1}=$ $\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me}, 21 \%$. (b) ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$) (i) $\mathrm{NaBPh}_{4}, 0.1$ $\mathrm{mol} \%\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}$; (ii) $\left(\mathrm{R}^{3}=\mathrm{SiMe}_{3}\right) \mathrm{Me}_{3} \mathrm{SiCl}$; (ii) $\left(\mathrm{R}^{3}=\mathrm{Me}\right)$ Mel. ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$) (i) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHSnBu}_{3}, \mathrm{LiCl}$, $2.5 \mathrm{~mol} \%(\mathrm{PhCH}=\mathrm{CHC}(\mathrm{O}) \mathrm{CH}=\mathrm{CHPh})_{3} \mathrm{Pd}_{2}$; (ii) $\left(\mathrm{R}^{3}=\mathrm{SiMe}_{3}\right)$ $\mathrm{Me}_{3} \mathrm{SiCl}$. (c) (one-pot) ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{R}^{0} ; \mathrm{R}^{3}=\mathrm{Me} \mathrm{S}_{3} \mathrm{Si}$) (i) $\mathrm{Ni}(1,5-\mathrm{COD})_{2}$; (ii) TMSCl ; (iii) $\mathrm{R}^{0} \mathrm{X} / h \nu ; \mathrm{R}^{0}=\mathrm{Ph}, \mathrm{H}_{2} \mathrm{CH}=\mathrm{CH}, \mathrm{Bu}$; (iv) $\mathrm{NaHB}(\mathrm{OMe})_{3} ; \mathrm{R}^{0}=\mathrm{H}$. (d) $\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}=\right.$ $\left.\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}^{3}=\mathrm{Me}_{3} \mathrm{Si}\right)\left(\mathrm{Me}_{3} \mathrm{SiO}\right)(\mathrm{MeO}) \mathrm{CCMe}_{2}, 10 \mathrm{~mol} \%$ Me ${ }_{3}$ SiOTf. $\quad\left(\mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{SPh}\right) \mathrm{PhSSiMe}_{3}, 10 \mathrm{~mol} \%$ $\mathrm{Me}_{3} \mathrm{SiOTf}$.
and disubstituted trimethylsilyl and methyl 2-[(E)-1-alkenyloxy]ethanoates 2a-k ($E / Z=96: 4-100: 0$) in $31-86 \%$ yield (Scheme I, Table I).

Aldol Reactions

In the presence of Lewis acid catalysts such as $\mathrm{Me}_{3} \mathrm{SiOTf}$ or $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$, trimethylsilyl 2-[(E)-1-alkenyloxy]ethanoates 2a-j were found to react with dimethyl and dibenzyl acetals to afford protected aldol products 3 a-t in $44-89 \%$ yield; subsequent reduction with LiAlH_{4} afforded the corresponding alcohols 4a-t (eq 3, Lewis acid $=\mathrm{Me}_{3} \mathrm{SiOTf}$ or $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$, Table II).

X-ray crystallography ${ }^{16}$ showed both $\mathbf{3 g}$ and 3 r to be cis-2,5-disubstituted-1,3-dioxolanones corresponding to erythro-diastereoselective reactions involving (net) syn-periplanar addition of the acetal-derived electrophile and ester oxygen nucleophile across the enol ether double bond. Similar stereochemical relationships were established for $3 \mathrm{e}, 3 \mathrm{j}$, and 3 a . In the case of 3 e , the results of NOE experiments (see under Experimental Section) on 3 e and its $C(2)$ epimer clearly support a cis-2,5-disubstituted-1,3-dioxolanone geometry. Optical rotation results showed the reduction product 4 e to correspond to the enantiomer of the known compound ($2 S$)-2-[(benzyloxy)methyl]-3-phenyl-1-propanol. ${ }^{17} \mathrm{Re}$ duction of 3 j to alcohol 4 j , followed by reductive demethoxylation and Jones oxidation, similarly afforded the enantiomer of the known compound ($2 S$)-2-benzyl-1-hexanoic acid, ${ }^{18}$ in agreement with the above results. Compound 3a was shown to be the erythro product by establishing that the dimethyl ether obtained by O-methylation of alcohol 4a was not the threo diastereomer (the preparation of which is described below).

Quantitative stereochemical analysis of the erythro alcohols derived from reduction of the unenriched aldol products reveals

[^1]Table I. Optically Active 2-[(E)-1-Alkenyloxy]ethanoate Starting Materials (cf. Scheme I)

entry	compd	R	R^{1}	R^{2}	config	R^{3}	method ${ }^{\text {a }}$	E / Z	yield ${ }^{\text {b }}$
1	2a	PhCH_{2}	H	C ${ }^{\text {c }}$	$2 S$	SiMe_{3}	I	100:0	49\%
2	2b	PhCH_{2}	H	Me	$2 S$	SiMe_{3}	I	100:0	36\%
3	2 c	PhCH_{2}	Me	Cy ${ }^{\text {c }}$	$2 R^{\text {d }}$	SiMe_{3}	1	100:0	47\%
4	2d	$n-\mathrm{Bu}$	H	Cy ${ }^{\text {c }}$	$2 R^{\text {d }}$	SiMe_{3}	II	21:1	82\% ${ }^{\circ}$
5	2 e	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	H	Cy ${ }^{\text {c }}$	$2 R^{\text {d }}$	SiMe_{3}	III	>95:5	86\%
6	$2 f$	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	H	Me	$2 S$	SiMe_{3}	III	>95:5	66\%
7	2g	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	Me	Cy ${ }^{\text {c }}$	$2 R^{\text {d }}$	SiMe_{3}	III	>95:5	44\%
8	2h	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	Me	Me	$2 S$	SiMe_{3}	III	>95:5	69\%
9	21	PhSCH_{2}	Me	Cy ${ }^{\text {c }}$	$2 R^{\text {d }}$	SiMe_{3}	III	96:4	79\%
10	2 j	Me	Me	Cy	$2 R^{\text {d }}$	SiMe_{3}	II	na	75\%
11	2k	PhCH_{2}	H	$\mathrm{Cy}^{\text {c }}$	$2 S$	Me	I	100:0	45\%

${ }^{a}$ Method of preparation (cf. Scheme I). Method I: nickel- or palladium-catalyzed organotin or organoborate conjugate addition. ${ }^{10}$ Method II: Stoichiometric nickel-mediated coupling with halocarbon electrophiles ${ }^{9}$ or organometallic nucleophiles. ${ }^{10}$ Method III: Lewis acid catalyzed conjugate addition. ${ }^{15}{ }^{6}$ Overall yield of trimethylsilyl or methyl $2-[(E)-1$-alkenyloxy]ethanoate from 2 -ethenyl-1,3-dioxolanone, unless otherwise noted. ${ }^{c} \mathrm{Cy}=$ cyclohexyl. ${ }^{\text {d Product enantiomeric to that depicted. 'Yield based on intermediate nickel complex. Snol ether not isolated. Yield is for the }}$ recrystallized aldol product, starting from 2-ethenyl-1,3-dioxolanone.

Table II. Aldol Reaction Products ${ }^{a}$

entry	ester	product	R	R^{1}	R^{2} config	R^{3}	R^{4}	\% yield ${ }^{\text {b }}$		\% ee $4^{\text {c }}$	$e / t-4^{d}$
								3	4		
1	2a	3a	Bn ${ }^{\text {e }}$	H	$\mathrm{Cy}^{\prime} 2 R^{8}$	Ph	Me	72	70	92 (92) ${ }^{\text {h }}$	99:1
2	2a	3b	$\mathrm{Bn}^{\text {e }}$	H	$\mathrm{CH}^{\prime} 2 R^{8}$	t-Bu	Me	86	84	92 (92) ${ }^{\text {h }}$	99:1
3	2a	3 c	Bn ${ }^{\text {e }}$	H	C y^{\prime} 2R ${ }^{\text {z }}$	Me	Me	80	75	$60(60)^{h}(74)^{l}$	9:1
4	2a	3 c	$\mathrm{Bn}^{\text {e }}$	H	C $y^{\prime} 2 R^{\text {g }}$	Me	Me	$95{ }^{\prime}$	70	98^{\prime}	4:1
5	2a	3d	$B n^{e}$	H	$\mathrm{Cy}^{\prime} 2 \mathrm{~S}$	H	Me	89	63	98^{\prime}	
6	2a	3 e	$\mathrm{Bn}^{\text {e }}$	H	$\mathrm{Cy}^{\prime} 2 R^{8}$	H	$\mathrm{Bn}^{\text {e }}$	88	52	94^{\prime}	
7	2a	3 f	Bn^{*}	H	$\mathrm{Cy}^{\prime} 2 R^{8}$	Ph	H	84	68	98	1:13
8	2 b	3g	$\mathrm{Bn}^{\text {e }}$	H	Me $2 S$	Ph	Me	81^{\prime}	72	85 (68) ${ }^{\prime}$	32:1
9	2 b	3h	$\mathrm{Bn}^{\text {e }}$	H	Me $2 S$	H	$\mathrm{Bn}^{\text {e }}$	81^{\prime}	64^{h}	88^{\prime}	
10	2c	3 i	$B n^{e}$	Me	$\mathrm{Cy}^{\prime} 2 R^{8}$	Ph	Me	k	67	$90(84)^{\prime}$	16:1
11	2d	3 j	$n-\mathrm{Bu}$	H	Cy ${ }^{2} R^{\text {g }}$	Ph	Me	76	92	87 ma	i
12	2 e	3k	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	H	$\mathrm{Cy}^{\prime} 2 R^{8}$	Ph	Me	86°	71	92	$>19: 1$
13	2 e	31	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	H	C y^{\prime} 2R ${ }^{8}$	$t-\mathrm{Bu}$	Me	78	71	90	>46:1
14	2 e	3m	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	H	Cy $2 R^{8}$	Me	Me	53 ,0	68	76	7:1
15	28	3 n	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	H	Me $2 S$	Ph	Me	84	k	76	>19:1
16	$2 f$	30	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	H	Me $2 S$	t - Bu	Me	61^{\prime}	k	50	99:1
17	$2 f$	3p	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	H	Me $2 S$	Me	Me	52^{j}	k	40^{\prime}	6.5:1
18	2 g	3q	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	Me	Cy ${ }^{\prime} R^{8}$	Ph	Me	44^{p}	k	96	32:1
19	2h	3 r	$\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$	Me	Me $2 S$	Ph	Me	55	62	$68{ }^{\prime}$	13:1
20	2 i	3 s	PhSCH_{2}	Me	C ${ }^{\prime}{ }^{2} R^{8}$	Ph	Me	75	42	$96(90)^{1}$	19:1
21	2j	3t	Me	Me	C y^{\prime} 2R ${ }^{\text {g }}$	Ph	Me	72	78	94	
22	2k	6 d	Bn^{2}	H	Cyf 2S	t-Bu	$\mathrm{Bn}^{\text {e }}$	73	k	92^{h}	>99:1

${ }^{a}$ All aldol reactions were carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ with $10-20 \mathrm{~mol} \% \mathrm{Me}_{3} \mathrm{SiOTf}$ unless otherwise noted. ${ }^{b}$ Isolated, purified yield. ${ }^{〔}$ Enantiomeric excess of erythro-4, determined by LISR analysis. ${ }^{d}$ Erythro/threo ratio of 4 . ${ }^{e} \mathrm{Bn}=$ benzyl. ${ }^{f} \mathrm{Cy}=$ cyclohexyl. ${ }^{8}$ Starting materials and products enantiomeric to those depicted. ${ }^{h}$ Enantiomeric excess of 6 (entry 1), 6 b (entry 2), and 6 c (entry 3), cf. eq 6 . ${ }^{\prime} \mathrm{Et}_{2} \mathrm{O}$ reaction. ${ }^{\mathrm{J}} \mathrm{Crude}^{2}$ yield. ${ }^{k}$ Not determined. 'Reaction catalyzed by $2-5 \mathrm{~mol} \% \mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$. ${ }^{m}$ Starting enol ether E / Z ratio 21:1. ${ }^{n}$ Enantiomeric excess determined by optical rotation (see Experimental). ${ }^{\circ}$ Overall yield starting from dioxolanone 1 for a one-pot conjugate addition/aldol reaction sequence. ${ }^{15}$ P Overall yield starting from methacrolein for a one-pot acetalization/conjugate addition/aldol reaction sequence. ${ }^{15}$
the following points. (1) Enantiomeric excesses $\geq 90 \%$ are possible with dimethyl and dibenzyl acetals derived from formaldehyde, acetaldehyde, pivalaldehyde, and benzaldehyde. (2) The aldol reactions are moderately to highly erythro diastereoselective (Table II, $e / t=4: 1-99: 1)$, even when quaternary and tertiary centers are juxtaposed (entries $10,18-20, e / t=13: 1-32: 1$). (3) The highest diastereoselectivities are observed with a bulky cyclohexyl substituent at the primary chiral center ($\mathrm{R}^{2}=\mathrm{Cy}$); however, synthetically useful diastereoselectivities are possible even with lactic acid derivatives (e.g., entry $8,85 \%$ ee). (4) The enantiomeric excesses are significantly catalyst dependent, $\mathrm{Me}_{3} \mathrm{SiOTf}$ giving better results than $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ in reactions with benzaldehyde dimethyl acetal (entry 20, 96% ee versus 90% ee) and $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ giving better results than $\mathrm{Me}_{3} \mathrm{SiOTf}_{\text {in reactions with acetaldehyde }}$ dimethyl acetal (cf. entry $3,60 \%$ ee versus entry $4,98 \%$ ee). (5) Perhaps most notably, the diastereoselectivities are remarkably insensitive to changes in substitution at the nucleophilic enol ether carbon, so that essentially identical results are observed regardless of whether $\mathrm{R}=\mathrm{PhCH}_{2}$ or $\mathrm{MeO}_{2} \mathrm{CCMe}_{2} \mathrm{CH}_{2}$ or PhSCH_{2} (cf. entries 1 versus 12 versus 20) and regardless of whether $R^{1}=H$ or Me (cf. entries 1 versus 10 and 12 versus 18). Indeed, high diastereoselectivities are observed even when both enol ether substituents are the same (entry $21, R=R^{1}=\mathrm{Me}, 94 \%$ ee)!

Inasmuch as several of the protected aldol products have been found to crystallize to diastereomeric purity ($\mathbf{3 g}, \mathbf{q}, \mathbf{r}, \mathbf{t}$) and the remainder have been found to be at least partially enriched by chromatography, it is expected that enantiomerically pure compounds will be accessible via this approach.

Although the reaction diastereoselectivities are remarkably insensitive to changes in substitution at the reacting centers, the reaction rates are sensitive to both steric and electronic effects. Whereas acetaldehyde dimethyl acetal, pivaladehyde dimethyl acetal, and benzaldehyde dimethyl acetal all give complete reaction in $4-14 \mathrm{~h}$ at $78^{\circ} \mathrm{C}$ with $10-20 \mathrm{~mol} \% \mathrm{Me}_{3} \mathrm{SiOTf}$ in dichloromethane, formaldehyde dimethyl acetal is completely unreactive under these conditions, requiring instead the more potent catalyst $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ and $4-5$ days at $-78{ }^{\circ} \mathrm{C}$ in dichloromethane. 3Bromopropanal dimethyl acetal is also relatively unreactive, giving only a trace of product (ca. 2%) under standard conditions with $\mathrm{Me}_{3} \mathrm{SiOTf}$ and again requiring $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ catalysis for complete reaction. 2-Chloroacetaldehyde dimethyl acetal, trimethyl orthobenzoate, tris(methylthio)methane, and acetonitrile are unreactive under standard $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed conditions (but have not been reacted under $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$-catalyzed conditions). Methyl trifluoromethanesulfonate does not react with enol ether 2a. The more sterically hindered disubstituted enol ethers are unreactive
with both formaldehyde dibenzyl acetal and with pivalaldehyde dimethyl acetal at $-78^{\circ} \mathrm{C}$ in dichloromethane, even in the presence of $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$. Simple aliphatic aldehydes such as 1 -hexanal react with $2 a$ to give complex mixtures, possibly because of competing aldehyde cyclotrimerization and/or acetalization chemistry. On the other hand, benzaldehyde does react cleanly with 2 a to afford, after aqueous workup, threo aldol product $3 f$ (eq 4, Table II, entry 7).

The absolute configuration at the secondary alcohol stereocenter was determined by 'H NMR analysis of the corresponding ($2 R$)and (2S)-O-methylmandelate derivatives, following the method of Trost et al. ${ }^{13}$ The relative configuration between this center and the adjacent stereocenter was determined by reduction of $3 f$ to diol 4 and conversion of the latter to cyclic acetonide 5 (eq 5), for which ${ }^{1} \mathrm{H}$ NMR spectroscopy showed ${ }^{3} J_{\mathrm{H}(5)-\mathrm{H}(6)}=10.4$ Hz . By way of comparison, ${ }^{3} J_{\mathrm{H}(5)-\mathrm{H}(6)}=10.0 \mathrm{~Hz}$ for trans-

2,2-dimethyl-4-formyl-5-phenyl-1,3-dioxirane, while ${ }^{3} J_{\mathrm{H}(5)-\mathrm{H}(6)}=$ 2.0 Hz for cis-2,2-dimethyl-4-formyl-5-phenyl-1,3-dioxirane. ${ }^{19}$ Compound 5 was therefore assigned as the trans cyclic acetonide, corresponding to threo relative stereochemistry for $3 f$. Additional evidence of this stereochemistry was obtained by methylation of diol $4 f$ to afford the corresponding di- O-methyl ether, which was shown to be the diastereomer of the dimethyl ether obtained from reduction and methylation of the corresponding benzaldehyde dimethyl acetal reaction product. LISR analysis of the threo di- O-methyl ether product of the benzaldehyde reaction showed it to be nearly enantiomerically pure (Table II, entry $7,98 \%$ ee).
Remarkably, whereas the benzaldehyde dimethyl acetal reaction is highly erythro diastereoselective (Table II, entry $1, \mathrm{e} / \mathrm{t}=99: 1$), the benzaldehyde reaction is highly threo diastereoselective ${ }^{20}$ (Table II, entry $7, \mathrm{e} / \mathrm{t}=1: 13$), the two compounds differing in stereochemistry at the β-hydroxy/alkoxy position but being the same at the α-position, a result we tentatively attribute to a change from an open transition state for the acetal reactions to a closed transition state for the benzaldehyde reaction (vide infra).

In another variant, the reactions of methyl ester $2 k$ with acetals and with benzaldehyde have also been examined. Dimethyl and dibenzyl acetals derived from benzaldehyde, acetaldehyde, and pivalaldehyde react with $\mathbf{2 k}$ to afford β-alkoxy dialkyl acetals 6 a-d, the auxiliary being recovered either as the mixed acetal of the type $\mathrm{R}^{3} \mathrm{CH}\left(\mathrm{OR}^{4}\right)\left(\mathrm{OCHCyCO} \mathrm{O}_{2} \mathrm{Me}\right)$ and/or as methyl hexahydromandelate (eq 6, Table II entries 1-3, 22). (An excess of

[^2]
the starting acetal is required, in its absence the aldol product is recovered as a complex mixture of 6 , the aldol product mixed acetal $\mathrm{RCH}\left(\mathrm{R}^{3} \mathrm{CHOR}{ }^{4}\right) \mathrm{CH}\left(\mathrm{OR}^{4}\right)\left(\mathrm{OCHCyCO}_{2} \mathrm{Me}\right)$ (both epimers), the corresponding aldehyde $\mathrm{RCH}\left(\mathrm{R}^{3} \mathrm{CHOR}^{4}\right) \mathrm{CHO}$, $\mathrm{R}^{3} \mathrm{CH}\left(\mathrm{OR}^{4}\right)\left(\mathrm{OCHCyCO}_{2} \mathrm{Me}\right)$, and free hexahydromandelate. Since control experiments show that 6 is an especially unreactive type of acetal, ${ }^{21}$ it is clear that the role of excess acetal is to ensure complete transacetalization and not to prevent polymerization.)

Stereochemical analysis of aldol products $6 \mathrm{a}-\mathrm{d}$, or suitable derivatives thereof, shows the methyl ester reactions to be characterized by erythro/threo ratios and enantiomeric excesses essentially identical with those observed for the corresponding silyl ester reactions (Table II, entries 1-3, 22). In a similar vein, methyl ester $2 k$ reacts with 2 equiv of benzaldehyde to afford 4 -alk-oxy-5-benzyl-6-phenyl-1,3-dioxane 7 (eq 7). The diastereose-

lectivity estimated by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product was $>90 \% \mathrm{ds}$; chromatography and crystallization gave a nonoptimized 42% yield of a single diastereomer.

Both $\mathrm{Me}_{3} \mathrm{SiOTf}$ and trifluoromethanesulfonic acid (TfOH) were found to be effective catalyst precursors and to give identical results, clearly suggesting that the TfOH is the actual catalyst in both cases, notwithstanding efforts to exclude moisture (see under Experimental Section). The depicted stereochemistry is based, first, on the assumption that the absolute configuration at $\mathrm{C}(5)$ corresponds to that observed for the other reactions and, second, on analysis of the ${ }^{1} \mathrm{H}$ NMR coupling constants for the 1,3-dioxane ring protons. In particular, the observation that ${ }^{3} J_{\mathrm{H}(5)-\mathrm{H}(6)}=10.8 \mathrm{~Hz}$ clearly indicates a trans-diaxial arrangement for $\mathrm{H}(5)$ and $\mathrm{H}(6)$, corresponding to threo stereochemistry, in accord with the corresponding silyl ester chemistry (cf. eq 4), while the observation that ${ }^{3} J_{\mathrm{H}(4)-\mathrm{H}(5)}=3.2 \mathrm{~Hz}$ indicates that the methyl hexahydromandelate auxiliary is in an axial position. Extending the analogy with silyl ester chemistry, it is anticipated that LISR analysis of the deprotected aldol product will show it to have an excellent enantiomeric excess. Further explorations of the scope, selectivity and mechanism of this variant are in progress.

Discussion

The above results demonstrate that net enantioselective aldol chemistry can indeed be achieved with optically active $2-[(E)$ 1 -alkenyloxy]ethanoates. Although the quoted chemical yields are moderate, both for the enol ether starting materials and the aldol products, it is to be emphasized that these are nonoptimized isolated yields and correspond to crude yields that are in excess of 90% in most cases. Unenriched enantiomeric excesses $\geq 90 \%$ ee are possible with acetals derived from formaldehyde, acet-
(21) Reaction of 6 b with silyl ester 2 a in the presence of $50 \mathrm{~mol} \%$ $\mathrm{Me}_{3} \mathrm{SiOTf}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ gave only ca. 50% reaction after 24 h . Faunce, J. A.; Mackenzie, P. B., unpublished results.

(a)

(b)

Figure 1. Newman projections of the proposed concerted, syn-periplanar transition state showing (a) the favored approach of R^{3} gauche to R^{1} and (b) the disfavored approach of R^{3} anti to R^{1}, interfering with dioxolanone ring closure ($\mathrm{R}^{5}=\mathrm{Me}_{3} \mathrm{Si}$ or Me).

TfO ${ }^{-}$
Figure 2. Proposed bicyclic transition state for the trifluoromethanesulfonic acid catalyzed reaction of 2 a with benzaldehyde ($\mathrm{R}^{5}=\mathrm{Me}_{3} \mathrm{Si}$ or Me).
aldehyde, pivalaldehyde, and benzaldehyde in reactions with both mono- and disubstituted enol ethers, yielding acyclic tertiary and quaternary carbon compounds. High erythro/threo ratios (e/t $=9: 1-99: 1)$ are observed in all cases except the $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$. catalyzed reaction of acetaldehyde dimethyl acetal with $\mathbf{2 a}$, for which $e / t=4: 1$. Enantiomerically pure erythro compounds are expected to be accessible via crystallization or chromatography of the initial products.

Our working hypothesis for the mechanism of these reactions is similar to that originally envisaged (vide supra), with the added assumption that the addition of the acetal-derived oxocarbenium ion and the trimethylsilyl or methyl ester oxygen across the enol ether double bond is a concerted, syn-periplanar reaction, wherein the need to minimize ion separation in the dichloromethane reaction solvent acts to disfavor the competing antiperiplanar pathway. In agreement with the model proposed by Noyori et al. ${ }^{11}$ to account for the erythro diastereoselectivity of the corresponding silyl enol ether reactions (cf. eq 1), we suppose that the acetal-derived oxocarbenium ion oxygen is anti to the nascent enol ether derived oxocarbenium ion (Figure 1) so as to minimize charge-charge repulsion. However, in order to account for the high diastereoselectivity observed with $\mathbf{2 j}$ (for which $R=R^{1}=$ Me and a 94% ee was observed for alcohol $5 t$), we further speculate that R^{3} prefers to be gauche to R^{1} so as to avoid interfering with dioxolanone ring closure.

We account for the threo diastereoselectivity of the benzaldehyde reactions by invoking a change in mechanism, from an open transition state to a closed, bicyclic transition state, tied together by the proton of the trifluoromethanesulfonic acid catalyst (Figure 2). (If it is assumed that the triflic acid is always hydrogen bonded to ester and/or aldehyde oxygens, then this becomes, in effect, a bimolecular, rather than termolecular, transition state.)

Obviously, many other possibilities exist for these reactions; we defer further analysis and speculation pending the outcome of experiments in progress. ${ }^{14}$

Experimental Section

A. General Procedures. All manipulations were conducted in a nitrogen atmosphere drybox or on a dual-manifold Schlenk line using purified, deoxygenated solvents and standard inert atmosphere techniques unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian XLA-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ and 101 MHz for ${ }^{13} \mathrm{C}$). Mass spectra were obtained on a VG high-resolution mass spectrometer Model 70-250SE. Optical rotations were measured on an optical activity AA- 100 polarimeter. Melting points were obtained on a Fisher-Jones
melting point apparatus and are uncorrected. Elemental analysis were performed by G.D. Searle Research and Development, Skokie, IL, Oneida Research Services, Inc., Whitesboro, NY, or Galbraith Laboratories, Inc., Knoxville, TN. Enantiomeric excesses were determined via lanthanide-induced shift reagent (LISR) experiments using tris[3-[(heptafluoropropyl)hydroxymethylene]-(+)-camphorato]europium(III) (Aldrich), with the ratios of major to minor enantiomer being determined by ${ }^{1} \mathrm{H}$ NMR peak integration and/or by cutting and weighing the peaks. Erythro/threo ratios were estimated by ${ }^{1} \mathrm{H}$ NMR analysis of the alcohols 4, or related derivatives, specified below. All chromatographic separations were accomplished by gravity column chromatography employing silica gel (Aldrich, 70-270 mesh). All solvents were purified and deoxygenated as follows: Chloroform, chloroform-d, acetonitrile, and dimethylformamide (DMF) were refluxed over and distilled from calcium hydride. Diethyl ether, tetrahydrofuran (THF), and pentane were dried with and vacuum transferred from sodium benzophenone ketyl. Benzaldehyde, benzaldehyde dimethyl acetal, acetaldehyde dimethyl acetal, and formaldehyde dimethyl acetal were purchased from Aldrich, degassed, and stored under nitrogen over $4-\AA$ molecular sieves. The following reagents were used as received or as otherwise noted: lithium aluminum hydride (Alfa Products), methyl trimethylsilyl dimethylketene acetal (Aldrich, degassed), chlorotrimethylsilane (Aldrich, distilled from quinoline), trimethylsilyl trifluoromethanesulfonate ($\mathrm{Me}_{3} \mathrm{SiOTf}$) (Aldrich, vacuum transferred), triphenylcarbenium hexachloroantimonate (Aldrich). Pivalaldehyde dimethyl acetal, ${ }^{22}$ pivalaldehyde dibenzyl acetal, ${ }^{23}$ formaldehyde dibenzyl acetal, ${ }^{23}$ bis (1,5 -cyclooctadiene) nickel(0) ($\mathrm{Ni}(\mathrm{COD})_{2}$), ${ }^{24}$ and optically active 2 -ethenyl-1,3-dioxolanones $1 \mathrm{a}-\mathrm{d}^{10}$ were prepared according to literature procedures.
B. Enol Ether Preparations. Optically active trimethylsilyl $2-[(E)$ -1-alkenyloxy]ethanoates $2 \mathrm{a}-\mathrm{c}^{10}$ and methyl $2 \cdot[(E)$-1-alkenyloxy]ethanoate $\mathbf{2 k}{ }^{10}$ were prepared via the palladium-catalyzed reaction of NaBPh_{4} with 2 -ethenyl-1,3-dioxolanones 1 a-c, ${ }^{10}$ followed by silylation or methylation of the resultant sodium $2 \cdot[(E)-1$-alkenyloxy $]$ ethanoates with $\mathrm{Me}_{3} \mathrm{SiCl}$ or MeI, respectively, following procedures that will be described elsewhere. ${ }^{10}$ Optically active trimethylsilyl $2-[(E)$-1-alkenyloxy]ethanoates $2 e-\mathrm{i}^{15}$ were prepared via the $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed conjugate addition of (MeO)($\left.\mathrm{Me}_{3} \mathrm{SiO}^{2}\right) \mathrm{CCMe}_{2}$ and $\mathrm{PhSSiMe}_{3}$ to 2 -ethenyl-1,3-dioxolanones $1 \mathrm{a}-\mathrm{c},{ }^{10}$ also following procedures that will be described elsewhere. ${ }^{1 s}$

Preparation of Trimethylsilyl (2R)-2-Cyclohexyl-2-[(E)-1-hexenyloxyjethanoate (2d). Bis $\left[\left(\mu\right.\right.$-chloro) (1,2,3- $\eta^{3}-1-[(R)-1$-(carbotrimethyl-silyloxy)-1-cyclohexylmethoxy]-2-propenyl)nickel(II) ${ }^{11}$ was prepared from ($2 R S, 5 R$)-5-cyclohexyl-2-ethenyl-1, 3 -dioxolan-4-one (1a), ${ }^{10} \mathrm{Ni}(\mathrm{C}$ OD) $2_{2}{ }^{24}$ and $\mathrm{Me}_{3} \mathrm{SiCl}$ and coupled with ${ }^{n} \mathrm{PrI}$ according to previously published procedures ${ }^{9}$ to afford the crude trimethylsilyl ester, which was purified by short-path distillation to afford $2 \mathrm{~d}\left(82 \%\right.$ based on $\mathrm{Ni}(\mathrm{COD})_{2}$, bp $76-77^{\circ} \mathrm{C}$ at $0.001 \mathrm{mmHg}, \mathrm{E} / \mathrm{Z}=21: 1$) as a clear, colorless oil. $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.13(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 4.75(1 \mathrm{H}$, $\mathrm{dt}, J=12.4,7.2 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 1.87-0.82(20 \mathrm{H}, \mathrm{m})$, $0.275(9 \mathrm{H}, \mathrm{s}) .101 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 171.6,145.0,105.8$, 82.7, 40.4, 32.6, 28.9, 28.0, 27.3, 26.1, 26.0, 25.9, 21.9, 13.8, 0.3. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$: $\mathrm{C}, 65.33 ; \mathrm{H}, 10.32$. Found: C, $65.60 ; \mathrm{H}, 10.47$.

Preparation of Trimethylsilyl (2R)-2-Cyclohexyl-2-[(2-methyl-1propenyl)oxyjethanoate ($\mathbf{2 j}$). ($2 R S, 5 R$)-5-Cyclohexyl-2-(1-methyl-1-ethenyl)-1,3-dioxolan-4-one (1c) ($4.67 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.21$ equiv), ${ }^{10} \mathrm{Ni}$ (COD) ${ }_{2}{ }^{24}$ ($5.01 \mathrm{~g}, 18.2 \mathrm{mmol}, 1.00$ equiv), and $\mathrm{Me}_{3} \mathrm{SiCl}$ ($4.75 \mathrm{~mL}, 37.5$ mmol, 2.05 equiv) were reacted according to published procedures ${ }^{9}$ and modified to include (MeO) ($\mathrm{Me}_{3} \mathrm{SiO}$) $\mathrm{CCMe}_{2}(0.750 \mathrm{~mL}, 3.69 \mathrm{mmol}, 0.20$ equiv) added as a proton-scavenging reagent, to afford a burgandy/red solid, presumed to be bis $\left[\left(\mu\right.\right.$-chloro) $\left(1,2,3-\eta^{3}-1-[(R)-1\right.$-(carbotrimethyl-silyloxy)-1-cyclohexylmethoxy]-2-methyl-2-propenyl)nickel(II)] (5.23 g , 76%). Reaction of a portion of this product ($5.01 \mathrm{~g}, 0.0133$ mono$\mathrm{mer} / \mathrm{mol}, 1.00$ monomer/equiv) with $\mathrm{NaB}(\mathrm{OMe})_{3} \mathrm{H}(1.89 \mathrm{~g}, 14.8 \mathrm{mmol}$, 1.11 equiv) in THF (60 mL) for 30 min gave a black mixture, which was concentrated at 15 mmHg to obtain a gummy black oil. This was treated with NaOMe (911 mg , $16.9 \mathrm{mmol}, 1.27$ equiv) in $\mathrm{MeOH} / \mathrm{CH}_{3} \mathrm{CN}$ (50 mL of a $1: 1$ mixture), stirred for 30 min , filtered through Celite, and concentrated at 15 mmHg to afford the crude sodium salt corresponding to 2 j . Recrystallization from methanol/acetonitrile gave pure sodium ($2 R$)-2-cyclohexyl-2-[(2-methyl-1-propenyl)oxy]ethanoate (2.339 g , 75%) as a white, crystalline solid. $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta 5.67$ $(1 \mathrm{H}, \mathrm{s}), 3.55(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 1.57-1.37(6 \mathrm{H}, \mathrm{m}), 1.46(3 \mathrm{H}, \mathrm{s})$, $1.37(3 \mathrm{H}, \mathrm{s}), 1.07-0.93(5 \mathrm{H}, \mathrm{m}) .101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 182.1$, 141.7, 115.3, 89.9, 43.2, 31.7, 30.8, 28.5, 28.4, 21.2, 17.2. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Na}_{2}(\mathrm{M}+\mathrm{Na})$: 257.1130. Found: 257.1161. A portion of this material ($2.20 \mathrm{~g}, 94.2$ mmol, 1.00 equiv) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(22) Kreevoy, M. M.; Taft, R. W. J. Am. Chem. Soc. 1955, 77, 5590
(23) Rosen, I.; Nelson, V. U.S. Patent 3,068,294, Dec 11, 1962.
(24) Krysan, D. J.; Mackenzie, P. B. J. Org. Chem. 1990, 55, 4229.
(40 mL) in a $250-\mathrm{mL}$ round-bottom flask that had been rinsed with ($\left.\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NH}$ and subsequently heated under vacuum to remove protic impurities. (MeO) $\left(\mathrm{Me}_{3} \mathrm{SiO}\right) \mathrm{CCMe}_{2}(1.91 \mathrm{~mL}, 94.0 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Me}_{3} \mathrm{SiCl}(3.60 \mathrm{~mL}, 186 \mathrm{mmol}, 2.00$ equiv) were added and the mixture was stirred for 3 h to give a milky white suspension. Removal of the volatiles under reduced pressure (15 mmHg) afforded a white slurry, which was extracted with pentane ($3 \times 40 \mathrm{~mL}$) via filter paper/tipped cannulation. The combined pentane extracts were concentrated at 15 mmHg to afford the crude silyl ester. Distillation through a $10-\mathrm{cm}$ Vigreux column afforded $2 \mathrm{j}(1.71 \mathrm{~g}, 66 \%$) as a clear, colorless oil (bp $98-99{ }^{\circ} \mathrm{C}$ at 2 mmHg). $400-\mathrm{MHz}^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.74$ ($1 \mathrm{H}, \mathrm{s}$), $3.76(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}$), $1.81-1.60(6 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{s})$, $1.52(3 \mathrm{H}, \mathrm{s}), 1.29-1.11(5 \mathrm{H}, \mathrm{m}), 0.29(9 \mathrm{H}, \mathrm{s}), 101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.0,139.0,112.4,84.8,40.6,29.1,27.8,26.2,26.1,26.0$, 19.4, 15.1, $\mathbf{- 0 . 2}$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}: 284.1808$. Found: 284.1808.
C. Aldol Reactions. The preparation and characterization of aldol products $3 k-n$ and $3 q-s$ and the corresponding alcohols $4 k-n$ and $4 q-s$ will be described elsewhere ${ }^{15}$ (and involve procedures essentially identical with those given below).

Typical Procedure for the Reaction of Trimethylsilyl Esters 2a-d,f,j-k with Aromatic and Aliphatic Acetals. Preparation of (2R,5R)-2-[(1R,2R)-1-Benzyl-2-methoxy-3,3-dimethylbutyl]-5-cyclohexyl-1,3-di-oxolan-4-one (3b). A $25-\mathrm{mL}$ Schlenk tube was charged with 2a (0.490 $\mathrm{g}, 1.41 \mathrm{mmol}, 1.00$ equiv), $t-\mathrm{BuCH}(\mathrm{OMe})_{2}(243 \mathrm{mg}, 1.84 \mathrm{mmol}, 1.30$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, then cooled to $-78^{\circ} \mathrm{C}$, and treated with $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($54.1 \mu \mathrm{~L}, 0.281 \mathrm{mmol}, 0.200$ equiv) (in the cases where $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ was used as catalyst, it was added to the $-78^{\circ} \mathrm{C}$ mixture in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After 6 h , the mixture was cannulated into a stirring mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined extracts were dried (MgSO_{4}), filtered, and concentrated under vacuum to remove the solvent. Chromatography (65 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/EtOAc) afforded 36 as a clear, colorless oil ($0.451 \mathrm{~g}, 86 \%$). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.31-7.18(5 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{s}), 3.97$ ($1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$), $3.43(3 \mathrm{H}, \mathrm{s}), 3.07-3.03(2 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{dd}$, $J=14.4,12.0 \mathrm{~Hz}), 2.38(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 1.86-1.14(11 \mathrm{H}, \mathrm{m})$, $0.98(9 \mathrm{H}, \mathrm{s}) . \quad 101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 172.6,140.3,129.1$, 128.5, 126.2, 103.4, 83.8, 79.1, 60.5, 44.0, 38.8, 37.0, 32.0, 29.2, 27.4, 26.3, 26.1, 26.0, 25.9. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4}: \mathrm{C}, 73.76 ; \mathrm{H}, 9.15$. Found: C, 73.59; H, 8.82.

Typical Procedure for the Reduction of Aldol Products 3a-j, o,p,t To Afford the Corresponding Alcohols $\mathbf{4 a - j}, \mathbf{o}, \mathrm{p}, \mathrm{t}$. Preparation of (2S,3R)-2-Benzyl-3-methoxy-4,4-dimethylpentanol (4b). A solution of crude, unenriched 3 b ($0.419 \mathrm{~g}, 1.12 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added dropwise via cannula to a stirring mixture of LiAlH_{4} (506 mg , $13.3 \mathrm{mmol}, 10.0$ equiv) and $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 1.5 h at $25^{\circ} \mathrm{C}$, the reaction was carefully quenched by sequential addition of water (2.5 mL), aqueous $\mathrm{NaOH}(2.5 \mathrm{~mL}, 10 \% \mathrm{NaOH}$ by weight), water (5 mL), and more aqueous $\mathrm{NaOH}(5 \mathrm{~mL}, 10 \% \mathrm{w} / \mathrm{w}$). The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15$ mL). The combined organic extracts were dried (MgSO_{4}), filtered, concentrated at 10 mmHg , and chromatographed (45 g of $\mathrm{SiO}_{2}, 70: 30$ hexane $/ \mathrm{EtOAc}$) to afford 4b as a clear, colorless oil ($0.237 \mathrm{~g}, 84 \%$ yield, erythro/threo $=99: 1,92 \%$ ee by LISR analysis). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.30-7.19(5 \mathrm{H}, \mathrm{m}), 3.53-3.50(5 \mathrm{H}, \mathrm{m}), 3.09(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=22.4,3.2 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{dd}, J=14.4,11.6$ Hz), 2.11-2.04 (1 H, m), $1.32(1 \mathrm{H}, \mathrm{s}), 1.01(9 \mathrm{H}, \mathrm{s}) .101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 141.7,129.0,128.4,125.9,88.8,64.9,61.5,44.0,36.9$, 32.6, 26.8. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 76.23 ; \mathrm{H}, 10.23$. Found: C , 76.08; H, 10.20.
(2R,5R)-5-Cyclohexyl-2-[(1R,2R)-1-benzyl-2-methoxy-2-phenyl-ethyl]-1,3-dioxolan-4-one (3a). 2a ($1.00 \mathrm{~g}, 2.89 \mathrm{mmol}, 1.00$ equiv), $\mathrm{PhCH}(\mathrm{OMe})_{2}\left(574 \mu \mathrm{~L}, 3.82 \mathrm{mmol}, 1.30\right.$ equiv), and $\mathrm{Me}_{3} \mathrm{SiOTf}(66.1 \mu \mathrm{~L}$, $0.382 \mathrm{mmol}, 0.120$ equiv) were reacted as per 3 b to afford, after chromatography (60 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/EtOAc), 3a as a clear, colorless oil ($817 \mathrm{mg}, 72 \%$). $400-\mathrm{MHz}^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.40-6.94(10 \mathrm{H}$, m), $5.47(1 \mathrm{H}, \mathrm{dd}, J=5.4,1.2 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 3.96(1$ $\mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 3.29(3 \mathrm{H}, \mathrm{s}), 2.92(1 \mathrm{H}, \mathrm{dd}, J=14.8,4.4 \mathrm{~Hz}), 2.76$ ($1 \mathrm{H}, \mathrm{dd}, J=14.8,8.0 \mathrm{~Hz}$), $2.34-2.29(1 \mathrm{H}, \mathrm{m}), 1.73-0.87(11 \mathrm{H}, \mathrm{m})$. $101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.6,140.9,139.4,134.4,129.7,129.0$, $128.5,128.1,128.0,127.6,126.8,125.7,104.3,81.7,78.7,57.2,51.8$, $38.8,29.8,28.9,26.7,25.9,25.7,25.7$. MS (70 eV) (rel intensity) 362 $\left(\mathrm{M}^{+}, 2.3\right), 222(2.3), 194$ (4.4), 193 (16.4), 169 (2.6), 141 (2.1), 133 (2.2), 131 (5.4), 122 (9.8), 121 (B), 95 (16.5), 91 (20.4), 77 (12.3). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4}$: C, $76.11 ; \mathrm{H}, 7.66$. Found: $\mathrm{C}, 75.86 ; \mathrm{H}, 7.71$.
(2S,3R)-2-Benzyl-3-methoxy-3-phenylpropanol (4a). Crude, unenriched 3a ($545 \mathrm{mg}, 1.38 \mathrm{mmol}, 1.00$ equiv) and LiAlH_{4} ($450 \mathrm{mg}, 11.9$ $\mathrm{mmol}, 8.6$ equiv) were reacted as per 4 b and chromatographed (160 g of $\mathrm{SiO}_{2}, 93: 7$ hexane/EtOAc) to afford 4 a as a clear, colorless oil (249
$\mathrm{mg}, 70 \%) .400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 87.39-7.10(10 \mathrm{H}, \mathrm{m}), 4.44$ $(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 3.52-3.43(2 \mathrm{H}, \mathrm{m}), 3.28(3 \mathrm{H}, \mathrm{s}), 2.73(1 \mathrm{H}, \mathrm{dd}$, $J=13.8,4.8 \mathrm{~Hz}$), $2.57(1 \mathrm{H}, \mathrm{dd}, J=13.8,10.0 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{m})$, $2.22-2.15(1 \mathrm{H}, \mathrm{m}), \quad 101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.3,139.4$, 131.1, 129.1, 128.4, 128.3, 127.7, 127.2, 125.9, 86.1, 62.5, 57.2, 48.5, 32.0. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 79.65; $\mathrm{H}, 7.86$. Found: $\mathrm{C}, 79.55$; H, 7.86 .
(1R,2S)-2-Benzyl-1,3-dimethoxy-1-phenylpropane (8a). In the drybox, a $50-\mathrm{mL}$ round-bottom flask containing a stir bar was charged with 4a ($150 \mathrm{mg}, 0.585 \mathrm{mmol}, 1.00$ equiv) and THF (7 mL). NaH (0.035 g of a 60% dispersion, $0.878 \mathrm{mmol}, 1.50$ equiv) was added with stirring resulting in rapid gas evolution and affording a milky grey mixture. After equipping the flask with a reflux condensor fitted with a nitrogen inlet, the mixture was transferred to the Schlenk line where MeI ($166 \mathrm{mg}, 1.17$ mmol, 2.00 equiv) was added and the mixture was heated to reflux. After a 3-h reflux, water (5 mL) was added and the mixture was transferred to a separatory funnel where the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried (Mg SO_{4}), filtered, concentrated at 15 mmHg , and chromatographed (17 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/ EtOAc) to afford 8 a as a clear, colorless oil (0.113 $\mathrm{g}, 72 \%$ yield, erythro/threo $=99: 1,92 \%$ ee by LISR analysis). $400-\mathrm{MHz}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.38-7.14(10 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, $3.26(3 \mathrm{H}, \mathrm{s}), 3.18(3 \mathrm{H}, \mathrm{s}), 3.10(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}), 3.03(1 \mathrm{H}$, dd, $J=13.6,4.0 \mathrm{~Hz}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=9.6,4.4 \mathrm{~Hz}), 2.68(1 \mathrm{H}, \mathrm{dd}$, $J=13.6,10.4 \mathrm{~Hz}), 2.11-2.03(1 \mathrm{H}, \mathrm{m}) .101-\mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $\delta 140.9,140.8,129.3,128.2,128.1,127.4,127.2,125.7,83.5,70.4,58.6$, 57.2, 47.9, 32.7. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{MeOH}\right): 238.1357$. Found: 238.1356.
(2R,5R)-5-Cyclohexyl-2-[(1R,2S)-1-benzyl-2-methoxypropyl]-1,3-dioxolan-4-one (3c). 2a ($227 \mathrm{mg}, 0.655 \mathrm{mmol}, 1.00$ equiv), MeCH(OMe$)_{2}$ ($150 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.30$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and $\mathrm{Me}_{3} \operatorname{SiOTf}$ ($14.4 \mathrm{mg}, 0.0655 \mathrm{mmol}, 0.100$ equiv) were reacted as per 3b to afford, after chromatography (40 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/ EtOAc), 3 c as a clear, colorless oil $(0.173 \mathrm{~g}, 80 \%)$. $400-\mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.32-7.18(5 \mathrm{H}, \mathrm{m}), 5.65(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{d}, J=3.2$ $\mathrm{Hz}), 3.49-3.43(1 \mathrm{H}, \mathrm{m}), 3.25(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=14.4,5.6 \mathrm{~Hz})$, 2.73 ($1 \mathrm{H}, \mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}$), 2.35-2.30 ($1 \mathrm{H}, \mathrm{m}$), 1.86-1.09 (14 H , m). $101-\mathrm{MHz}^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 172.7,140.2,129.0,128.9,128.5$, 128.4, 126.1, 103.8, 79.1, 74.8, 56.4, 48.4, 38.9, 29.8, 29.1, 26.8, 26.0, 25.9, 25.8, 16.0. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}: \mathrm{C}, 72.26 ; \mathrm{H}, 8.49$. Found: C, 71.99; H, 8.19.
(2S,3S)-2-Benzyl-3-methoxybutanol (4c). Crude, unenriched 3c (89.0 $\mathrm{mg}, 0.267 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{LiAlH}_{4}(102 \mathrm{mg}, 2.67 \mathrm{mmol}, 10.0$ equiv) were reacted as per $\mathbf{4 b}$ to afford, after chromatography (15 g of $\mathrm{SiO}_{2}, 75: 25$ hexane/EtOAc), 4 c as a clear, yellow oil ($39.0 \mathrm{mg}, 75 \%$ yield, erythro/threo $=9: 1,60 \%$ ee by LISR analysis). $400-\mathrm{MHz}^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.31-7.18(5 \mathrm{H}, \mathrm{m}), 3.73-3.67(1 \mathrm{H}, \mathrm{m}), 3.61-3.54$ $(2 \mathrm{H}, \mathrm{m}), 3.34(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.4 \mathrm{~Hz}), 2.58(2 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 2.19-2.12(1 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}) .101-\mathrm{MHz}$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 128.9,128.4,126.0,99.3,96.1,79.7,63.4,56.4$, 45.8, 33.0, 14.4. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{++}-\mathrm{OH}_{2}\right):$ 176.1201. Found: 176.1237.

Diethyl Ether Reaction To Afford 3c and Subsequent Conversion to Alcohol 4c. $2 \mathrm{a}(1.41 \mathrm{mmol}), \mathrm{MeCH}(\mathrm{OMe})_{2}(5.52 \mathrm{mmol})$, and $\mathrm{Me}_{3} \mathrm{SiOTf}$ (0.282 mmol) were reacted as per 3 b , but with $\mathrm{Et}_{2} \mathrm{O}$ in place of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and a reaction time of 21 h , to afford 3 c (85% crude yield). Reduction as per $\mathbf{4 b}$ gave $\mathbf{4 c}$ (erythro/threo $=9: 1,74 \%$ ee by LISR analysis).
$\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$-Catalyzed Reaction To Afford 3c and Subsequent Conversion to Alcohol 4 c . 2 a ($115 \mathrm{mg}, 0.332 \mathrm{mmol}, 1.00$ equiv), MeCH(OMe$)_{2}\left(45.6 \mu \mathrm{~L}, 0.431 \mathrm{mmol}, 1.30\right.$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.00 mL) were reacted as per 3b, but with $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}(8.00 \mathrm{mg}, 0.0120 \mathrm{mmol}, 0.0400$ equiv) as the catalyst and a reaction time of 21 h , to afford $3 \mathrm{c}(0.105 \mathrm{~g}$, 95% crude yield). Reduction as per $\mathbf{4 b}$ afforded, after chromatography (75 g of $\mathrm{SiO}_{2}, 80: 20$ hexane/EtOAc), $\mathbf{4 c}(0.0430 \mathrm{~g}, 70 \%$ yield, erythro/threo $=4: 1,98 \%$ ee by LISR analysis).
(2S,5S)-5-Cyclohexyl-2-[(1S)-1-benzyl-2-methoxyethyl]-1,3-di-oxolan-4-one (3d). 2 a ($496 \mathrm{mg}, 1.43 \mathrm{mmol}, 1.00$ equiv), $\mathrm{H}_{2} \mathrm{C}(\mathrm{OMe})_{2}$ ($165 \mu \mathrm{~L}, 1.86 \mathrm{mmol}, 1.30$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.00 \mathrm{~mL}\right.$), and $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ ($165 \mathrm{mg}, 0.0286 \mathrm{mmol}, 0.0200$ equiv, in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were reacted as per 3 b , but with a reaction time of 120 h , to afford, after chromatography (300 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/EtOAc), 3d as a clear, colorless oil $(0.403 \mathrm{~g}, 89 \%) .400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.32-7.19(5 \mathrm{H}, \mathrm{m})$, $5.54(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 3.39(1 \mathrm{H}, \mathrm{d}, J$ $=2.4 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 3.30(3 \mathrm{H}, \mathrm{m}), 2.87(1 \mathrm{H}, \mathrm{dd}, J$ $=13.6,5.6 \mathrm{~Hz}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.2 \mathrm{~Hz}), 2.30-2.22(1 \mathrm{H}, \mathrm{m})$, 1.89-1.19 (11 H, m). $101-\mathrm{MHz}^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 172.5,139.1$, 129.3, 128.5, 126.3, 103.5, 78.9, 69.6, 58.9, 44.8, 39.1, 31.4, 29.0, 27.0, 26.1, 26.0, 25.9. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$: 318.1831. Found: 318.1830. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}: \mathrm{C}, 71.67 ; \mathrm{H}, 8.23$. Found: C , 72.07; H, 8.21.
(2R)-2-Benzyl-3-methoxypropanol (4d). Crude, unenriched 3d (158 $\mathrm{mg}, 0.496 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{LiAlH}_{4}(188 \mathrm{mg}, 4.96 \mathrm{mmol}, 10.0$ equiv) were reacted as per 4 b to afford, after chromatography (75 g of $\mathrm{SiO}_{2}, 70: 30$ hexane/EtOAc), 4d as a clear, yellow oil ($56.0 \mathrm{mg}, 63 \%$ yield, 98% ee by LISR analysis). $400-\mathrm{MHz}^{1} \mathrm{H}$ NMR (CDCl_{3}): δ 7.31-7.17 ($5 \mathrm{H}, \mathrm{m}$), 3.74-3.70 (1 H , br dd), 3.65-3.60 ($1 \mathrm{H}, \mathrm{br} \mathrm{dd}$), 3.49 ($1 \mathrm{H}, \mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}$), $3.39(1 \mathrm{H}$, dd, $J=8.8,3.2 \mathrm{~Hz}$), 3.34 (3 H , s), 2.69-2.58 ($2 \mathrm{H}, \mathrm{m}$), $2.51(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 2.15-2.08(1 \mathrm{H}, \mathrm{m})$. 101-MHz ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$): $\delta 139.9,129.0,128.4,126.1,75.7,65.6$, 59.1, 42.4, 34.5. HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: 180.1150 . Found: 180.1146.
(2R,5R)-5-Cyclohexyl-2-[(1R)-1-benzyl-2-(benzyloxy)ethyl]-1,3-di-oxolan-4-one (3e). $2 \mathrm{a}\left(1.00 \mathrm{~g}, 2.89 \mathrm{mmol}, 1.00\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.00 mL), $\mathrm{H}_{2} \mathrm{C}\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)_{2}$ ($856 \mathrm{mg}, 3.75 \mathrm{mmol}, 1.30$ equiv), and $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ ($33.0 \mathrm{mg}, 0.0577 \mathrm{mmol}, 0.0200$ equiv in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were reacted as per 3b, but with a reaction time of 120 h , to afford, after chromatography (200 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/EtOAc), 3 e as a clear, colorless oil $(1.00 \mathrm{~g}, 88 \%) .400-\mathrm{MHz}^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.36-7.17(10 \mathrm{H}, \mathrm{m})$, $5.59(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{dd}, J=22.0,11.6 \mathrm{~Hz}), 4.08$ (1 $\mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 3.50(2 \mathrm{H}, \mathrm{dd}, J=4.8,3.6 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=$ $13.2,5.6 \mathrm{~Hz}$), $2.77(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.2 \mathrm{~Hz}$), 2.34-2.27 ($1 \mathrm{H}, \mathrm{m}$), $1.85-1.15(11 \mathrm{H}, \mathrm{m})$. $101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.7,139.0$, 138.1, 129.2, 128.5, 128.4, 127.6, 127.5, 126.3, 103.5, 78.9, 73.2, 67.1, 44.8, 39.0, 31.4, 29.0, 26.8, 26.0, 25.9, 25.8. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4}$: $\mathrm{C}, 76.11 ; \mathrm{H}, 7.66$. Found: $\mathrm{C}, 76.01 ; \mathrm{H}, 7.77$. Chromatography also yielded a small amount of a minor diastereomer, assigned as the corresponding trans-2,5-disubstituted-1,3-dioxolan-4-one, (2S,5R)-5-cyclo-hexyl-2-[(1R)-1-benzyl-2-(benzyloxy)ethyl]-1,3-dioxolan-4-one. (This assignment is based upon the close similarity of the $\mathrm{C}(2) \mathrm{H}$ region of this compound with that of the corresponding ($2 R, 5 R$)-5-cyclohexyl-2-[(1R)-1-benzyl-2-methoxyethyl]-1,3-dioxolan-4-one (3d), for which the minor diastereomer resonances have been assigned. $)^{14}$ Whereas irradiation of the $\mathrm{C}(5) \mathrm{H}$ resonance of the putative cis isomer 3 e resulted in an 8% enhancement of the $\mathrm{C}(2) \mathrm{H}$ resonance, irradiation of the $\mathrm{C}(5) \mathrm{H}$ resonance of the putative trans isomer had no effect on its $\mathrm{C}(2) \mathrm{H}$ resonance.
(2S)-2-Benzyl-3-(benzyloxy)propanol (4e). Crude, unenriched 3e ($710 \mathrm{mg}, 1.80 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{LiAlH}_{4}(683 \mathrm{mg}, 18.0 \mathrm{mmol}, 10.0$ equiv) were reacted as per 4 b to afford, after chromatography (55 g of $\mathrm{SiO}_{2}, 75: 25$ hexane/EtOAc), 4e as a clear, colorless oil ($0.238 \mathrm{~g}, 52 \%$ yield, 94% ee by LISR analysis). $400-\mathrm{MHz}^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: δ $7.37-7.16(10 \mathrm{H}, \mathrm{m}), 4.50(2 \mathrm{H}$, dd, $J=18.4,12.0 \mathrm{~Hz}$), 3.76-3.73 (2 $\mathrm{H}, \mathrm{m}), 3.68-3.58(2 \mathrm{H}, \mathrm{m}), 3.49(1 \mathrm{H}, \mathrm{dd}, J=8.8,6.8 \mathrm{~Hz}), 2.66(2 \mathrm{H}$, $\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}), 2.41(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 2.19-2.10(1 \mathrm{H}, \mathrm{m})$. $101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.0,138.0,129.0,128.5,128.4,127.8$, 127.7, 126.1, 73.5, 72.9, 65.5, 42.6, 34.5. $[\alpha]^{24} \mathrm{D}=-24.3^{\circ}(c 0.74, \mathrm{EtOH})$ [cf. Holladay, M.W., et al., $[\alpha]_{D}^{24}=+23.6^{\circ}(c 0.72, \mathrm{EtOH})$ for (2R)-2-benzyl-3-(benzyloxy)propanol]. ${ }^{17}$ Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}$, 79.65; H, 7.86. Found: C, 79.27; H, 7.88.
(2R,5R)-5-Cyclohexyl-2-[(1R,2S)-1-benzyl-2-hydroxy-2-phenyl-ethyl]-1,3-dioxolan-4-one (3f). 2a ($347 \mathrm{mg}, 1.00$ mmol, 1.00 equiv), PhCHO ($318 \mathrm{mg}, 3.00 \mathrm{mmol}, 3.00$ equiv), and $\mathrm{Me}_{3} \operatorname{SiOTf}(23.2 \mu \mathrm{~L}$, $0.120 \mathrm{mmol}, 0.120$ equiv) were reacted as per 3 b for 3 h to afford, after chromatography (50 g of $\mathrm{SiO}_{2}, 75: 25$ hexane/ EtOAc), 3 f as a clear, colorless oil ($0.325 \mathrm{~g}, 84 \%$). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.35-7.11$ $(10 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 4.04$ ($1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}$), $2.85(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}$), $2.74(1 \mathrm{H}, \mathrm{dd}, J=13.6$, $6.4 \mathrm{~Hz}), 2.67(1 \mathrm{H}, \mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}), 2.61-2.54(1 \mathrm{H}, \mathrm{m}), 1.96-1.63$ ($6 \mathrm{H}, \mathrm{m}$), $1.37-1.14(5 \mathrm{H}, \mathrm{m}) .101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.8$, 150.9, 141.6, 139.1, 133.7, 129.0, 128.6, 128.5, 128.3, 127.8, 126.3, 126.1, $103.2,79.2,72.1,49.5,38.8,30.6,29.0,27.0,25.9,25.8,25.7$. MS (15 eV) (rel intensity) $380\left(\mathrm{M}^{+}, 4.7\right), 289$ (10.6), 274 (16.9), 240 (4.7), 194 (9.0), 193 (12.7), 149 (16.7), 134 (46.2), 133 (B), 116 (26.2), 107 (25.8), 95 (22.9), 92 (19.1), 91 (4.1). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}$: C, 75.76 ; H, 7.42. Found: $\mathrm{C}, 75.70 ; \mathrm{H}, 7.42$.
(1S,2S)-2-Benzyl-3-hydroxy-1-phenylpropanol (4f). Crude, unenriched $3 f\left(3.03 \mathrm{~g}, 7.96 \mathrm{mmol}, 1.00\right.$ equiv) and $\mathrm{LiAlH}_{4}(1.80 \mathrm{~g}, 47.8 \mathrm{mmol}$, 6.00 equiv) were reacted as per 4 b to afford, after flash chromatography ($\mathrm{SiO}_{2}, 3: 1$ hexane/EtOAc), 4f as a clear, colorless oil ($1.31 \mathrm{~g}, 68 \%$ yield). $400-\mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.36-7.12$ ($10 \mathrm{H}, \mathrm{m}$), 4.77 (1 H , dd, J $=6.4,4.0 \mathrm{~Hz}), 3.77-3.73(1 \mathrm{H}, \mathrm{m}), 3.60-3.54(1 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{d}$, $J=4.4 \mathrm{~Hz}), 2.71(1 \mathrm{H}, \mathrm{dd}, J=13.6,5.6 \mathrm{~Hz}), 2.60(1 \mathrm{H}, \mathrm{dd}, J=13.6$, $9.6 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 2.14-2.09(1 \mathrm{H}, \mathrm{m}) .101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 143.4,140.1,129.0,128.5,128.4,127.7,126.3,126.1$, 78.0, 63.2, 48.5, 34.7. MS (15 eV) (rel intensity) 242 ($\mathrm{M}^{+}, 1.8$), 193 (1.2), 133 (4.0), 118 (B), 117 (30.5), 107 (19.7), 105 (2.4), 92 (3.9), 91 (2.6), 79 (5.7). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$: 242.1306. Found: 242.1321 .
(1S,2S)-2-Benzyl-1,3-dimethoxy-1-phenylpropane (8b). $4 f$ (166 mg , $0.479 \mathrm{mmol}, 1.00$ equiv), NaH (58.0 mg of a 60% dispersion, 1.43 mmol ,
3.00 equiv), and MeI ($201 \mathrm{mg}, 1.43 \mathrm{mmol}, 3.00$ equiv) were reacted in THF (3 mL) as per 8 a to afford, after chromatography (17 g of SiO_{2}, 90:10 hexane/EtOAc), 8b as a clear, colorless oil ($0.107 \mathrm{~g}, 83 \%$ yield, erythro/threo $=1: 13,98 \%$ ee by LISR analysis). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.38-7.09(10 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 3.45(1 \mathrm{H}$, dd, $J=9.2,5.2 \mathrm{~Hz}), 3.27(3 \mathrm{H}, \mathrm{s}), 3.23(3 \mathrm{H}, \mathrm{s}), 3.11(1 \mathrm{H}, \mathrm{dd}, J=9.2$, $4.8 \mathrm{~Hz}), 2.58(1 \mathrm{H}, \mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}), 2.49(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.2$ $\mathrm{Hz}), 2.23-2.15(1 \mathrm{H}, \mathrm{m}) .101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.8,140.3$, 129.2, 128.2, 127.5, 127.4, 125.8, 82.7, 70.3, 58.7, 57.1, 47.5, 33.5 Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}$: $\mathrm{C}, 79.96 ; \mathrm{H}, 8.20$. Found: $\mathrm{C}, 79.77 ; \mathrm{H}, 8.29$.
(4S,5S)-5-Benzyl-2,2-dimethyl-4-phenyl-1,3-dioxane (5). 4 f (458 mg , $1.89 \mathrm{mmol}, 1.00$ equiv), $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}(30.0 \mathrm{~mL})$, and p-toluenesulfonic acid ($4.10 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.011$ equiv) were combined and stirred vigorously for 5 min and then allowed to stand for 14 h at $25^{\circ} \mathrm{C}$. After NEt_{3} was added (8 drops, distilled from CaH_{2}), the solvent was removed at 15 mmHg to afford, after flash chromatography ($85: 15$ hexane/ethyl acetate), 5 as a clear, colorless oil ($445 \mathrm{mg}, 83 \%$ yield), ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR. Further purification of a $400-\mathrm{mg}$ portion of this material was achieved by gravity column chromatography (100 g of $\mathrm{SiO}_{2}, 94: 6$ hexane/ethyl acetate), yielding analytically pure 5 ($301 \mathrm{mg}, 62 \%$) as a white solid. $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.43-7.10(8 \mathrm{H}, \mathrm{m}), 6.94(2 \mathrm{H}$, $\mathrm{d}, J=7.2 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 3.75-3.64(2 \mathrm{H}, \mathrm{m}), 2.47$ ($1 \mathrm{H}, \mathrm{dd}, J=13.2,3.2 \mathrm{~Hz}$), 2.23-2.18 ($1 \mathrm{H}, \mathrm{m}$), 2.12 ($1 \mathrm{H}, \mathrm{dd}, J=13.2$, $11.2 \mathrm{~Hz}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s}) .101-\mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 140.0,138.5,128.6,128.5,128.3,127.7,126.1,98.8,77.7,64.5,42.4$, 34.4, 29.8, 19.1. MS (15 eV) (rel intensity) 282 ($\mathrm{M}^{+}, 1.2$), 207 (5.3), 166 (2.7), 165 (24.6), 119 (9.7), 118 (B), 117 (29.6), 107 (16.1), 91 (11.4). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 80.82 ; \mathrm{H}, 7.85$. Found: $\mathrm{C}, 80.67$; H, 7.83 .

Preparation of the (\boldsymbol{R}) $-\boldsymbol{O}$-Methylmandelate Derivative of $\mathbf{3 f}$, ($2 R, 5 R$)-5-Cyclohexyl-2-[(1R,2S)-1-benzyl-2-[(R)-carbomethoxy-phenylmethoxy]-2-phenylethylf-1,3-dioxolan-4-one (9a). Following the procedure of Trost et al., ${ }^{13}$ a solution of dry DMF ($164 \mathrm{mg}, 2.24 \mathrm{mmol}$, 1.5 equiv) in dry $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and treated with oxalyl chloride ($208 \mathrm{mg}, 1.64 \mathrm{mmol}, 1.1$ equiv), added over 5 min , to give a white suspension. Solid (R)- O-methylmandelic acid was added through a funnel and the resultant mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min to yield a slightly yellow solution. A mixture of $3 f(625 \mathrm{mg}, 1.64 \mathrm{mmol}, 1.10$ equiv) and pyridine ($260 \mathrm{mg}, 3.28 \mathrm{mmol}, 2.20$ equiv) was added via cannula over 10 min and the mixture was maintained at $0^{\circ} \mathrm{C}$ for 40 min . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, saturated aqueous $\mathrm{CuSO}_{4}(2 \times 20 \mathrm{~mL})$, and again with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated at 0.01 mmHg to afford, after chromatography (80 g of $\mathrm{SiO}_{2}, 97: 3$ hexane/EtOAc), $9 \mathrm{a}(0.173 \mathrm{~g}$, 22%). $400-\mathrm{MHz}^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.55-7.08(13 \mathrm{H}, \mathrm{m}), 6.62-6.60$ $(2 \mathrm{H}, \mathrm{m}), 5.75(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 4.82(1$ $\mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 3.37(3 \mathrm{H}, \mathrm{s}), 2.68(1 \mathrm{H}, \mathrm{dd}, J=13.6$, $4.8 \mathrm{~Hz}), 2.65-2.60(1 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}), 1.83-1.21$ ($11 \mathrm{H}, \mathrm{m}$). HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H}): 529.2590$. Found: 529.2586.

Preparation of the (S)- O-Methylmandelate Derivative of 4 , (2R,5R)-5-Cyclohexyl-2-[(1R,2S)-1-benzyl-2-[(S)-carbomethoxy-phenylmethoxy]-2-phenylethylf-1,3-dioxolan-4-one (9b). Repeating the above procedure with (S)- 0 -methylmandelate gave 9 b (35% after chromatography). $400-\mathrm{MHz}^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.42-6.88(15 \mathrm{H}, \mathrm{m})$, $5.86(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{s}), 3.94$ ($1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$), $3.41(3 \mathrm{H}, \mathrm{s}), 2.77(1 \mathrm{H}, \mathrm{dd}, J=14.0,4.8 \mathrm{~Hz}$), $2.70-2.64(1 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}), 1.87-1.16(11 \mathrm{H}$, $\mathrm{m})$. HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H}): 529.2590$. Found: 529.2683 .
(2S,5S)-2-[(1S,2S)-1-Benzyl-2-methoxy-2-phenylethyl]-5-methyl-1,3-dioxolan-4-one (3g). 2 b ($425 \mathrm{mg}, 1.53 \mathrm{mmol}, 1.00$ equiv), PhCH (OMe$)_{2}$ ($302 \mathrm{mg}, 1.98 \mathrm{mmol}, 1.30$ equiv), and $\mathrm{Me}_{3} \mathrm{SiOTf}(29.2 \mu \mathrm{~L}, 0.153$ $\mathrm{mmol}, 0.100$ equiv) were reacted as per 3 b for 3 h to afford crude 3 g (404 $\mathrm{mg}, 81 \%$) as a clear, colorless oil, ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR. Crystallization from pentane afforded 3 g as a white crystalline solid (269 mg , $54 \%), \mathrm{mp} 87-88^{\circ} \mathrm{C} .400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.38-7.05(10 \mathrm{H}$, $\mathrm{m}), 5.35(1 \mathrm{H}, \mathrm{dd}, J=3.6,1.2 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.18(\mathrm{l}$ $\mathrm{H}, \mathrm{dq}, J=6.4,1.2 \mathrm{~Hz}), 3.24(3 \mathrm{H}, \mathrm{s}), 3.02(1 \mathrm{H}, \mathrm{dd}, J=14.4,4.4 \mathrm{~Hz})$, $2.82(1 \mathrm{H}, \mathrm{dd}, J=14.8,4.4 \mathrm{~Hz}), 2.48-2.43(1 \mathrm{H}, \mathrm{m}), 1.29(3 \mathrm{H}, \mathrm{d}, J$ $=6.8 \mathrm{~Hz}) . \quad 101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 173.4,140.3,139.6,129.0$, 128.4, 128.2, 127.8, 127.2, 125.9, 103.8, 81.9, 71.1, 56.9, 50.5, 30.7, 15.6. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$: $\mathrm{C}, 73.60 ; \mathrm{H}, 6.79$. Found: $\mathrm{C}, 73.53 ; \mathrm{H}, 6.91$. (The structure of $\mathbf{3 g}$ has been determined by X-ray crystallographic analysis. Crystallographic details, including ORTEP diagrams, tables of atomic coordinates, thermal parameters, bond angles, and bond lengths are available as supplementary material from an earlier communication. ${ }^{8}$
(2R,3S)-2-Benzyl-3-methoxy-3-phenylpropanol (4g). Crude, unenriched 3 g ($224 \mathrm{mg}, 0.686 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{LiAlH}_{4}(260 \mathrm{mg}, 6.86$ mmol, 10.0 equiv) were reacted as per 4 b to afford crude 4 g as a clear, colorless oil ($126 \mathrm{mg}, 72 \%$ yield, erythro $/$ threo $=32: 1,85 \%$ ee by LISR
analysis), ca. 95% pure by ${ }^{1}$ H NMR analysis but otherwise evincing an ${ }^{1} \mathrm{H}$ NMR spectrum identical with that observed for the enantiomeric alcohol 4a.
$\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$-Catalyzed Reaction To Afford 3g and Subsequent Reduction to 4 g .2 b ($325 \mathrm{mg}, 1.17 \mathrm{mmol}, 1.00$ equiv), $\mathrm{PhCH}(\mathrm{OMe})_{2}(231 \mathrm{mg}$, $1.52 \mathrm{mmol}, 1.30$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}(14.0 \mathrm{mg}$, $0.0233 \mathrm{mmol}, 0.0200$ equiv, in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were reacted as per 3 b for 3 h to afford crude 3 g as a clear, colorless oil ($0.298 \mathrm{~g}, 78 \%$), ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR. Reduction with $\mathrm{LiAlH}_{4}(273 \mathrm{mg}, 7.20 \mathrm{mmol}$, 10.0 equiv) as per 4 b gave crude $\mathbf{4 g}$ ($0.157 \mathrm{~g}, 66 \%$ overall, erythro/threo $=19: 1,68 \%$ ee by LISR analysis), ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR analysis, the ${ }^{1} \mathrm{H}$ NMR spectrum being otherwise identical with that observed for the enantiomeric alcohol 4a.
(2S,5S)-2-[(1S)-1-Benzyl-2-(benzyloxy)ethyl]-5-methyl-1,3-di-oxolan-4-one (3 h). 2 b ($620 \mathrm{mg}, 2.23 \mathrm{~mol}, 1.00$ equiv), $\mathrm{H}_{2} \mathrm{C}\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)_{2}$ ($661 \mathrm{mg}, 2.89 \mathrm{mmol}, 1.30$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~mL}\right.$), and $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$ (25.7 $\mathrm{mg}, 0.0454 \mathrm{mmol}, 0.0200$ equiv in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were reacted as per 3b for 120 h to afford crude 3 h as a colorless oil $(0.589 \mathrm{~g}, 81 \%)$, ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR. Chromatography ($90: 10$ hexane/EtOAc) of a small portion yielded analytically pure material. $400-\mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.36-7.16(10 \mathrm{H}, \mathrm{m}), 5.64(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 4.45(2 \mathrm{H}, \mathrm{d}, J=4.0$ $\mathrm{Hz}), 4.35(1 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 3.53-3.47(2 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{dd}, J$ $=13.6,5.2 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{dd}, J=14.0,9.2 \mathrm{~Hz}), 2.35-2.28(1 \mathrm{H}, \mathrm{m})$, $1.51(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) . \quad 101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 173.7$, $138.8,138.0,129.3,129.2,128.5,128.4,127.7,127.6,126.3,103.7,73.3$, 71.5, 67.1, 44.6, 31.1, 16.2. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 73.60 ; \mathrm{H}$, 6.79. Found: C, 73.40; H, 6.61.
(2R)-2-Benzyl-3-(benzyloxy)propanol (4h). Crude, unenriched 3h was reduced with LiAlH_{4} as per 4 b to afford 4 h (64% crude yield, 88% ee by LISR analysis) ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR analysis, the ${ }^{1} \mathrm{H}$ NMR spectrum being otherwise identical with that observed for the enantiomeric alcohol 4 e.
$\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}$-Catalyzed Preparation of (2R,5R)-5-Cyclohexyl-2-[(1R,2S)-1-benzyl-2-methoxy-1-methyl-2-phenylethyl]-1,3-dioxolan-4-one (3i). 2c ($486 \mathrm{mg}, 1.35 \mathrm{mmol}, 1.00$ equiv), $\mathrm{PhCH}(\mathrm{OMe})_{2}(265 \mu \mathrm{~L}, 1.77$ $\mathrm{mmol}, 1.31$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and $\mathrm{Ph}_{3} \mathrm{CSbCl}_{6}(40.0 \mathrm{mg}, 0.0690$ mmol, 0.0500 equiv) were reacted as per $3 b$ for 15 h to afford, after chromatography (24 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/EtOAc), 3 i as a clear, colorless oil ($0.164 \mathrm{~g}, 81 \%$). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 7.38-7.10$ $(10 \mathrm{H}, \mathrm{m}), 5.39(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{s}), 3.89(1 \mathrm{H}, \mathrm{dd}, J$ $=4.8,1.2 \mathrm{~Hz}), 3.18(3 \mathrm{H}, \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{d}$, $J=13.6 \mathrm{~Hz}), 1.85-1.46(6 \mathrm{H}, \mathrm{m}), 1.27-1.02(5 \mathrm{H}, \mathrm{m}), 0.82(3 \mathrm{H}, \mathrm{s})$. $101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.6,137.9,137.5,131.1,128.8,127.9$, $127.8,127.5,125.9,106.4,85.8,78.6,56.7,55.4,45.6,38.6,36.9,29.0$, 27.3, 25.9, 25.7, 15.5. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4}: \mathrm{C}, 76.44 ; \mathrm{H}, 7.90$. Found: C, 76.35; H, 8.03.
(2S,3S)-2-Benzyl-3-methoxy-2-methyl-3-phenylpropanol (4i). Crude, unenriched 3 i ($383 \mathrm{mg}, 0.937 \mathrm{mmol}, 1.00$ equiv) and LiAlH_{4} (370 mg , $9.75 \mathrm{mmol}, 10.4$ equiv) were reacted as per $4 b$ to afford, after chromatography (24 g of $\mathrm{SiO}_{2}, 75: 25$ hexane/EtOAc), 41 as a clear, colorless oil ($150 \mathrm{mg}, 65 \%$ yield, erythro/threo $=19: 1,84 \%$ ee by LISR analysis). $400-\mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.40-7.16(10 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{s}), 3.35$ ($1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$), $3.30(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}$), $3.26(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.13$ $(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}), 2.39(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 0.65(3 \mathrm{H}, \mathrm{s})$. $101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 138.1,137.9,131.0,128.6,128.0,127.8$, 127.2, 125.9, 91.7, 68.4, 57.1, 43.3, 37.2, 18.6. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}$: C, $79.96 ; \mathrm{H}, 8.20$. Found: C, $79.92 ; \mathrm{H}, 8.00$.
$\mathbf{M e}_{3}$ SiOTf-Catalyzed Preparation of 3 i and Subsequent Reduction to 4i. 2c ($218 \mathrm{mg}, 0.605 \mathrm{mmol}, 1.00$ equiv), $\mathrm{PhCH}(\mathrm{OMe})_{2}(125 \mu \mathrm{~L}, 0.833$ mmol, 1.38 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$, and $\mathrm{Me}_{3} \operatorname{SiOTf}(11.7 \mu \mathrm{~L}, 0.0605$ $\mathrm{mmol}, 0.100$ equiv) were reacted as per 3 b for 18 h to afford crude 3 i , which was isolated but not analyzed before being reduced with LiAlH_{4} as per 4 b to obtain $\mathbf{4 i}$ ($0.110 \mathrm{~g}, 67 \%$ yield, erythro $/$ threo $=16: 1,90 \%$ ee by LISR analysis).
(2R,5R)-5-Cyclohexyl-2-[(1R)-1-[(R)-methoxyphenylmethyl]-pentyl]-1,3-dioxolan-4-one (3j) and Subsequent Conversion to ($2 R$)-2Benzylhexanoic Acid. ${ }^{18}$ 2d ($500 \mathrm{mg}, 1.60 \mathrm{mmol}, 1.00$ equiv), PhCH (OMe$)_{2}\left(320 \mu \mathrm{~L}, 2.13 \mathrm{mmol}, 1.33\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.5 \mathrm{~mL})$, and $\mathrm{Me}_{3} \mathrm{SiOTf}(37.1 \mu \mathrm{~L}, 0.192 \mathrm{mmol}, 0.120$ equiv) were reacted as per 36 for 3 h to afford, after chromatography (35 g of $\mathrm{SiO}_{2}, 5: 1$ hexane/EtOAc), 3j as a clear, colorless oil ($0.438 \mathrm{~g}, 76 \%$). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.38-7.26(5 \mathrm{H}, \mathrm{m}), 5.39(1 \mathrm{H}, \mathrm{dd}, J=5.6,1.2 \mathrm{~Hz}), 4.44$ $(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 3.25(3 \mathrm{H}, \mathrm{s}), 1.94-1.09$ $(18 \mathrm{H}, \mathrm{m}), 0.077(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .101-\mathrm{MHz}^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $\delta 172.8,139.6,128.3,127.5,126.7,104.8,82.4,78.8,57.1,49.0,39.0$, $30.5,29.0,26.9,26.0,25.9,25.8,23.4,22.7,13.7$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}: \mathrm{C}, 73.30 ; \mathrm{H}, 8.95$. Found: C, 73.04; H. 8.98. Reduction to (2S)-2-[(R)Methoxyphenylmethyl]-1-hexanol (4j). Crude, unenriched $3 \mathrm{j}\left(2.21 \mathrm{~g}, 6.14 \mathrm{mmol}, 1.00\right.$ equiv) and $\mathrm{LiAlH}_{4}(1.40 \mathrm{~g}, 36.8 \mathrm{mmol}, 6.00$ equiv) were reacted as per 4 b to afford, after flash chromatography ($3: 1$
hexane/ethyl acetate), $4 \mathrm{j}(1.26 \mathrm{~g}, 92 \%)$ as a clear, colorless oil. 400 $\mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.37-7.24(5 \mathrm{H}, \mathrm{m}), 4.39(1 \mathrm{H}, \mathrm{d}, J=4.8$ $\mathrm{Hz}), 3.64-3.51(2 \mathrm{H}, \mathrm{m}), 3.24(3 \mathrm{H}, \mathrm{s}), 2.62(1 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz})$, $1.93-1.88(1 \mathrm{H}, \mathrm{m}), 1.34-1.13(6 \mathrm{H}, \mathrm{m}), 0.820(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$. $101-\mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 139.1,128.2,127.5,127.2,87.1,63.5$, 57.2, 46.1, 29.7, 25.6, 22.9, 14.0. MS (15 eV) (rel intensity) 222 (M^{+}, 0.7), 190 (0.4), 160 (0.9), 123 (1.0), 122 (15.7), 121 (B), 91 (2.7), 77 (1.2). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 75.63 ; \mathrm{H}, 9.97$. Found: $\mathrm{C}, 75.26$; H, 9.99. Demethoxylation to (2R)-2-benzyl-1-hexanol: Dry ammonia (ca. 12 mL) was condensed under nitrogen into a flask immersed in a -78 ${ }^{\circ} \mathrm{C}$ dry ice/acetone bath. THF (6.0 mL) and lithium metal (61.0 mg , 8.78 mmol) were added to afford a dark blue solution, and then 4 j (650 $\mathrm{mg}, 2.93 \mathrm{mmol}$, dissolved in 5 mL of THF under N_{2}) was added dropwise over 7 min , followed by THF wash (1 mL). The mixture was stirred for 10 min , after which time solid ammonium chloride (1.5 g) was added, causing the mixture to turn greyish white. The cold bath was removed, allowing the ammonia to evaporate, and then the residue was taken up in a mixture of saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and transferred to a separatory funnel. The aqueous layer was separated and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and then the combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated at 15 mmHg to afford a $1: 1$ mixture of the desired ($2 R$)-2-benzyl-1-hexanol and ($2 R$)-2-cyclo-hexadienyl-1-hexanol. The latter was reoxidized to the desired 2-benzyl derivative by refluxing the mixture with 2,3 -dichloro-5,6-dicyano-1,4benzoquinone ($427 \mathrm{mg}, 1.88 \mathrm{mmol}, 0.640$ equiv based on starting 4 j) in $\mathrm{C}_{6} \mathrm{H}_{6}(25 \mathrm{~mL})$ for 1.5 h , during which time a white precipitate formed. After it cooled to room temperature, the mixture was diluted with diethyl $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the supernatent was transferred via filter paper tipped cannula into a separatory funnel, washed with 1% aqueous $\mathrm{NaOH}(2 \times$ 30 mL) and then with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated at 15 mmHg to afford crude ($2 R$)-2-benzyl-1-hexanol (340 $\mathrm{mg}, 61 \%$ yield) as a yellow oil (converted without purification to the corresponding acid). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.29-7.16(5 \mathrm{H}$, $\mathrm{m}), 3.51(2 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}), 2.62(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.79-1.76(1$ $\mathrm{H}, \mathrm{m}), 1.38-1.22(7 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$. Oxidation to afford ($2 R$)-2-benzylhexanoic acid: A portion of the crude ($2 R$)-2-benzyl-1-hexanol ($180 \mathrm{mg}, 0.936 \mathrm{mmol}, 1.00$ equiv) was dissolved in acetone (10 mL), cooled to $0^{\circ} \mathrm{C}$, and treated with Jones reagent ($\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4} /$ acetone), added dropwise until the orange color of the latter persisted, ca. 0.60 mL of Jones reagent solution being required. The mixture was allowed to warm to $25^{\circ} \mathrm{C}$, stirred for 20 min , and then treated with a few drops of 2-propanol to give a mixture of a green supernatent and a green precipitate. The supernatent was then decanted and the solid washed with acetone $(2 \times 5 \mathrm{~mL})$. The supernatent and acetone washes were combined and diluted with an equal volume of $\mathrm{Et}_{2} \mathrm{O}$ and then washed with saturated aqueous $\mathrm{NaCl}(3 \times 100 \mathrm{~mL})$. The organic layer was then separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated at 15 mmHg to afford, after chromatography (42 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/EtOAc increasing to $85: 15$ hexane/EtOAc), pure (2R)-2-benzyl-1-hexanoic acid ($91.2 \mathrm{mg}, 47 \%$), $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.28-7.15(5 \mathrm{H}, \mathrm{m}), 2.96(1 \mathrm{H}, \mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}), 2.74(1 \mathrm{H}, \mathrm{dd}$, $J=13.6,6.8 \mathrm{~Hz}), 2.69-2.64(1 \mathrm{H}, \mathrm{m}), 1.66-1.59(1 \mathrm{H}, \mathrm{m}), 1.54-1.47$ $(1 \mathrm{H}, \mathrm{m}), \mathrm{l} .36-1.24(4 \mathrm{H}, \mathrm{m}), 0.860(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .101-\mathrm{MHz}$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 139.2,128.9,128.8,126.4,38.1,31.5,29.4,22.5$, 13.9. MS (70 eV) (rel intensity) 206 ($\mathrm{M}^{+}, 7.7$), 150 (7.6), 149 (5.9), 131 (7.6), 117 (3.6), 115 (4.3), 104 (3.8), 103 (2.9), 92 (12.3), 91 (B), 79 (2.2), 78 (6.5), 77 (4.0), 65 (7.4). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}$, $75.69 ; \mathrm{H}, 8.80$. Found: $\mathrm{C}, 75.36 ; \mathrm{H}, 8.81$. Optical rotation showed that $[\alpha]^{24}{ }_{D}=-19.86^{\circ}\left(c 2.024, \mathrm{C}_{6} \mathrm{H}_{6}\right)$, corresponding to 87% ee based on the reported rotation of the enantiomeric acid $\left[[\alpha]^{24}{ }_{D}=22.8^{\circ}\right.$ (c 2.063, $\mathrm{C}_{6} \mathrm{H}_{6}$) for (2S)-2-benzyl-1-hexanoic acid]. ${ }^{18}$ (We note that while all efforts were made to avoid enrichment or depletion of diastereomers during chromatography of the foregoing aldol product and alcohol derivatives, we cannot rule out the possibility that some minor enrichment or depletion may have occurred, thereby altering the final enantiomeric excess.)

Preparation of (2S,5S)-2-[(1S)-3-Carbomethoxy-3-methyl-1-[(1S)-1-methoxy-2,2-dimethylpropyl]butyl]-5-methyl-1,3-dioxolan-4-one (30) and Subsequent Reduction to (2R)-4,4-Dimethyl-2-[(1S)-1-methoxy-2,2-dimethylpropyl]pentane-1,5-diol (40). $2 f(173 \mathrm{mg}, 0.572 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}), 1-\mathrm{BuCH}(\mathrm{OMe})_{2}(98.4 \mathrm{mg}, 0.744 \mathrm{mmol}, 1.30$ equiv), and $\mathrm{Me}_{3} \mathrm{SiOTf}(11.0 \mu \mathrm{~L}, 0.0572 \mathrm{mmol}, 0.100$ equiv) were reacted as per 3 b to afford crude 30 as a clear, yellow oil ($115 \mathrm{mg}, 61 \%$). This compound was not characterized as such and was instead reduced with LiAlH_{4} as per 4 b to afford crude 40 (erythro/threo $=99: 1,50 \%$ ee by LISR analysis) ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR analysis, the ${ }^{1} \mathrm{H}$ NMR spectrum being otherwise identical with that observed for the enantiomeric alcohol 41 . ${ }^{15}$

Preparation of (2S,5S)-2-[(1S)-3-Carbomethoxy-1-[(1R)-1-methoxyethylf 3 -methylbutyl-5-methyl-1,3-dioxolan-4-one (3p) and Conversion
to (2R)-2-[(1R)-1-Methoxyethyl]-4,4-dimethylpentane-1,5-diol (4p). 2f ($212 \mathrm{mg}, 0.701 \mathrm{mmol}, 1.00$ equiv), $\mathrm{MeCH}(\mathrm{OMe})_{2}(96.4 \mu \mathrm{~L}, 0.911 \mathrm{mmol}$, 1.30 equiv), and $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($13.4 \mu \mathrm{~L}, 0.0701 \mathrm{mmol}, 0.100$ equiv) were reacted as per 3b, but with $\mathrm{Et}_{2} \mathrm{O}$ as the reaction solvent, to afford crude 3p as a clear, yellow oil ($133 \mathrm{mg}, 52 \%$). This compound was not characterized as such but was instead reduced as per 4 b to afford alcohol 4 p (erythro/threo $=6.5: 1,40 \%$ ee by LISR analysis) ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR analysis, the ${ }^{1} \mathrm{H}$ NMR spectrum being otherwise identical with that observed for the enantiomeric alcohol 4 m . ${ }^{15}$
(2R,5R)-5-Cyclohexyl-2-[(2S)-2-methoxy-1,1-dimethyl-2-phenyl-ethyl]-1,3-dioxolan-4-one (3t). 2j ($520 \mathrm{mg}, 1.83 \mathrm{mmol}, 1.00$ equiv), $\mathrm{PhCH}(\mathrm{OMe})_{2}\left(360 \mu \mathrm{~L}, 2.40 \mathrm{mmol}, 1.31\right.$ equiv), and $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($35.5 \mu \mathrm{~L}$, $0.184 \mathrm{mmol}, 0.100$ equiv) were reacted as per 3 b for 17 h . Recrystallization of half of this product from pentane afforded 3 t as a white crystalline solid ($218 \mathrm{mg}, 72 \%$). $\quad 400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.37-7.26 (5 H, m), $5.51(1 \mathrm{H}, \mathrm{s}), 4.21(1 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}, \mathrm{d}, J=2.8$ Hz), 3.18 ($3 \mathrm{H}, \mathrm{s}$), 1.90-1.63 ($6 \mathrm{H}, \mathrm{m}$), 1.36-1.16 ($5 \mathrm{H}, \mathrm{m}$), 0.97 (3 H , s), $0.75(3 \mathrm{H}, \mathrm{s}) .101-\mathrm{MHz}^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 173.0,137.5,128.6$, 127.8, 127.7, 106.2, 86.2, 79.0, 57.0, 42.3, 39.0, 29.1, 27.2, 26.1, 25.9, 16.7, 15.9. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$: 332.1988. Found: 332.1980. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$: $\mathrm{C}, 72.26 ; \mathrm{H}, 8.49$. Found: $\mathrm{C}, 72.19 ; \mathrm{H}, 8.51$.
(3S)-3-Methoxy-2,2-dimethyl-3-phenylpropanol (4t). Crude, unenriched 3 t ($265 \mathrm{mg}, 0.798 \mathrm{mmol}, 1.00$ equiv) and LiAlH_{4} ($308 \mathrm{mg}, 8.12$ $\mathrm{mmol}, 10.2$ equiv) were reached as per 4 b to afford, after chromatography (35 g of $\mathrm{SiO}_{2}, 70: 30$ hexane $/ \mathrm{Et}_{2} \mathrm{O}$), 4t as a clear, colorless oil (139 $\mathrm{mg}, 78 \% ; 94 \%$ ee by LISR analysis). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.37-7.26 ($5 \mathrm{H}, \mathrm{m}$), $4.11(1 \mathrm{H}, \mathrm{s}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=10.8,6.4 \mathrm{~Hz}$), 3.44 ($1 \mathrm{H}, \mathrm{dd}, J=11.2,5.2 \mathrm{~Hz}$) , 3.21 ($4 \mathrm{H}, \mathrm{br} \mathrm{s}$), $0.88(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}$, s). $101-\mathrm{MHz}^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 138.1,128.2,127.6,92.1,71.7,57.3$, 39.4, 22.9, 19.6. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 74.19; $\mathrm{H}, 9.34$. Found: C, 74.44; H, 9.38 .

Preparation of (2S,3S)-2-Benzyl-1,1,3-trimethoxy-3-phenylpropane (6a) and Subsequent Reductive Demethoxylation To Afford (1S,2R)-2-Benzyl-1,3-dimethoxy-1-phenylpropane (10). 2k ($205 \mathrm{mg}, 0.711 \mathrm{mmol}$, 1.00 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}), \mathrm{PhCH}(\mathrm{OMe})_{2}(1.17 \mathrm{~mL}, 7.82 \mathrm{mmol}, 11.0$ equiv), and $\mathrm{Me}_{3} \mathrm{SiOTf}(13.7 \mu \mathrm{~L}, 0.0711 \mathrm{mmol}, 0.100$ equiv) were reacted as per 3 b for 3 h to afford, after chromatography (90 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/EtOAc), 6a as a clear, colorless oil ($155 \mathrm{mg}, 73 \%$) [along with a separate fraction containing the free auxiliary, methyl hexahydromandelate ($76.0 \mathrm{mg}, 63 \%$)]. $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.36-6.96$ $(10 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 3.29$ ($3 \mathrm{H}, \mathrm{s}$), $3.27(3 \mathrm{H}, \mathrm{s}), 3.11(3 \mathrm{H}, \mathrm{s}), 2.83(1 \mathrm{H}, \mathrm{dd}, J=14.4,4.0 \mathrm{~Hz}$), 2.73 (1 H, dd, $J=14.4,6.8 \mathrm{~Hz}$), $2.26-2.21(1 \mathrm{H}, \mathrm{m}) . \quad 101-\mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 142.4,140.9,129.0,128.3,127.8,127.2,126.9,125.2$, 106.3, 83.1, 57.2, 54.5, 53.8, 50.3, 31.1. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$: C, 75.97; H, 8.05. Found: C, 75.99; H, 7.80. Reductive Demethoxylation to afford 10: Crude, unenriched 6 ($180 \mathrm{mg}, 0.600 \mathrm{mmol}, 1.00$ equiv) $\mathrm{Et}_{3} \mathrm{SiH}$ ($105 \mu \mathrm{~L}, 0.659 \mathrm{mmol}, 1.10$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}$), and $\mathrm{Me}_{3} \mathrm{SiOTf}(1.1 \mu \mathrm{~L}, 0.0060 \mathrm{mmol}, 0.010$ equiv) were reacted according to the procedure of Noyori et al. ${ }^{25}$ to afford, after aqueous workup and chromatography (40 g of $\mathrm{SiO}_{2}, 95: 5$ hexane/EtOAc), 10 ($112 \mathrm{mg}, 65 \%$ yield, erythro/threo $=46: 1,92 \%$ ee by LISR analysis) as a clear, colorless oil, identical by ${ }^{1} \mathrm{H}$ NMR analysis with the enantiomeric di-O-ether 8a.

Preparation of (2S,3S)-2-Benzyl-1,1,3-trimethoxy-4,4-dimethylpentane (6 b), Hydrolysis to (2S,3S)-2-Benzyl-3-methoxy-4,4-dimethylpentanal (11), and Reduction of the Latter To ($2 R, 3 S$)-2-Benzyl-3-methoxy-4,4-dimethylpentanol (4u). 2k ($286 \mathrm{mg}, 0.992 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}), t-\mathrm{BuCH}(\mathrm{OMe})_{2}(1.44 \mathrm{~g}, 10.9 \mathrm{mmol}, 11.0$ equiv), and $\mathrm{Me}_{3} \mathrm{SiOTf}(38.3 \mu \mathrm{~L}, 0.198 \mathrm{mmol}, 0.200$ equiv) were reacted as per 3b to give a mixture of 6b, the (tentatively characterized) mixed acetal t - $\mathrm{BuCH}(\mathrm{OMe})\left(\mathrm{OCHCyCO}_{2} \mathrm{Me}\right)$, and methyl hexahydromandelate. The mixture was refluxed with base (0.8 g of NaOH in 2 mL of $\mathrm{H}_{2} \mathrm{O} / 5 \mathrm{~mL}$ of THF $/ 3 \mathrm{~mL}$ of MeOH) for 1 h and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 20 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated at 15 mmHg to afford 6 b as a clear, colorless oil (220 $\mathrm{mg}, 79 \%$), pure by ${ }^{1} \mathrm{H}$ NMR. $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.30-7.19$ ($5 \mathrm{H}, \mathrm{m}$), $3.89(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 3.46(3 \mathrm{H}, \mathrm{s}), 3.42(3 \mathrm{H}, \mathrm{s}), 3.16$ $(3 \mathrm{H}, \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=14.8,3.6 \mathrm{~Hz})$, $2.55(1 \mathrm{H}, \mathrm{dd}, J=14.8,11.2 \mathrm{~Hz}), 2.18-2.14(1 \mathrm{H}, \mathrm{m}), 0.95(9 \mathrm{H}, \mathrm{s})$. $101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 142.0,129.0,128.3,125.6,107.1,84.8$, $60.1,56.0,55.7,44.1,36.9,32.4,26.3$. HRMS calad for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right.$ $-\mathrm{MeOH}):$ 248.1776. Found: 248.1779. Hydrolysis to the corre-
(25) Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lell. 1979, 20, 4679.
sponding aldehyde: Crude 6 b ($82.0 \mathrm{mg}, 0.270 \mathrm{mmol}, 1.00$ equiv), LiBF_{4} ($256 \mathrm{mg}, 2.73 \mathrm{mmol}, 10.0$ equiv), $\mathrm{CH}_{3} \mathrm{CN}\left(5.5 \mathrm{~mL}\right.$), and $\mathrm{H}_{2} \mathrm{O}(110 \mu \mathrm{~L})$ were reacted according to the method of Lipshultz et al. ${ }^{26}$ to afford 11 as a clear, colorless oil ($60.0 \mathrm{mg}, 87 \%$), ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR (converted without purification to the corresponding alcohol, as described below). $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.76(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz})$, $7.31-7.18(5 \mathrm{H}, \mathrm{m}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.27$ ($1 \mathrm{H}, \mathrm{d}, J=3.6$), 3.11 ($1 \mathrm{H}, \mathrm{dd}$, $J=13.6,2.4 \mathrm{~Hz}), 2.99-2.86(2 \mathrm{H}, \mathrm{m}), 0.98(9 \mathrm{H}, \mathrm{s}) .101 \cdot \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 204.3,139.9,128.9,128.6,126.3,86.6,60.6,55.0$, 36.7, 31.0, 26.6. Reduction to the corresponding alcohol: Crude 11 (28 mg, 0.12 mmol), 1.0 equiv) and LiAlH_{4} ($45 \mathrm{mg}, 1.2 \mathrm{mmol}, 10$ equiv) were reacted as per $4 b$ to afford $4 u(26 \mathrm{mg}, 93 \%$, erythro/threo $>99: 1$, 96% ee by LISR analysis), ca. 95% pure by ${ }^{1} \mathrm{H}$ NMR analysis and evincing an otherwise identical ${ }^{1} \mathrm{H}$ NMR spectrum with that observed for the enantiomeric alcohol $\mathbf{4 b}$.
(2S,3R)-2-Benzyl-1,1,3-trimethoxybutane (6c). 2k ($228 \mathrm{mg}, 0.791$ $\mathrm{mmol}, 1.00$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}), \mathrm{MeCH}(\mathrm{OMe})_{2}(784 \mathrm{mg}, 8.79 \mathrm{mmol}$, 11.0 equiv), and $\mathrm{Me}_{3} \mathrm{SiOTf}^{(~} 30.6 \mu \mathrm{~L}, 0.158 \mathrm{mmol}, 0.200$ equiv) were reacted as per 3 b for 18 h to afford, after workup as per $6 \mathrm{~b}, 6 \mathrm{c}$ as a clear yellow oil ($110 \mathrm{mg}, 61 \%$ yield, erythro/threo $=9: 1,60 \%$ ee by LISR analysis), pure by ${ }^{1} \mathrm{H}$ NMR. $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.28-7.16$ ($5 \mathrm{H}, \mathrm{m}$), $4.37(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}$), $3.48-3.42(1 \mathrm{H}, \mathrm{m}), 3.38(3 \mathrm{H}, \mathrm{s})$, $3.29(3 \mathrm{H}, \mathrm{s}), 3.27(3 \mathrm{H}, \mathrm{s}), 2.79(1 \mathrm{H}, \mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}), 2.72$ (1 $\mathrm{H}, \mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}), 2.12-2.06(1 \mathrm{H}, \mathrm{m}), 1.13(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$. $101-\mathrm{MHz}^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 142.0,129.0,128.1,125.5,106.0,76.0$, $56.4,54.7,54.4,48.0,31.3,16.4$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{3} \mathrm{OH}$): 206.13068. Found: 206.13063.

Preparation of (2S,3S)-2-Benzyl-1,1,3-tris(benzyloxy)-4,4-dimethylpentane (6d) and Subsequent Hydrogenolysis To Afford (2R,3S)-2-Benzyl-4,4-dimethylpentane-1,3-diol (12). 2k ($314 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.00$ equiv), $t-\mathrm{BuCH}\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)_{2}\left(1.55 \mathrm{~g}, 5.44 \mathrm{mmol}, 5.00\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL), and $\mathrm{Me}_{3} \mathrm{SiOTf}(42.1 \mu \mathrm{~L}, 0.218 \mathrm{mmol}, 0.200$ equiv) were reacted as per 3 b for 15 h to afford, after workup as per 6 b , a $2: 1$ mixture of 6 d and pivalaldehyde dibenzyl acetal, which was subjected to hydrogenolysis (Parr apparatus, $45 \mathrm{psi}, 20 \mathrm{~h}, 50 \mathrm{~mL}$ of EtOAc, 0.5 equiv of $10 \% \mathrm{Pd} / \mathrm{C}$) to afford a clear, colorless oil. Crystallization from ether at $-40^{\circ} \mathrm{C}$ gave 12 ($120 \mathrm{mg}, 50 \%$ yield based on $\mathbf{2 k}$) as a white crystalline solid, mp $137-138^{\circ} \mathrm{C} .400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right){ }^{\wedge} 7.31-7.18(5 \mathrm{H}, \mathrm{m}), 3.68$ $(1 \mathrm{H}, \mathrm{s}), 3.58(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{dd}, J=14.0,3.2 \mathrm{~Hz})$, $2.72(1 \mathrm{H}, \mathrm{dd}, J=14.4,11.6 \mathrm{~Hz}), 2.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.07-2.01(1 \mathrm{H}, \mathrm{m})$, $1.90\left(1 \mathrm{H}, \mathrm{br}\right.$ s), $1.06(9 \mathrm{H}, \mathrm{s}) .101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 141.2$, 129.1, $128.4,125.9,81.5,65.7,42.6,35.8,30.7,27.0$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right):$ 204.1514. Found: 204.1502. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 75.63 ; \mathrm{H}, 9.97$. Found: $\mathrm{C}, 75.67 ; \mathrm{H}, 10.05$. Analysis of the crude, unenriched diol showed the erythro/threo ratio to be >99:1 and the optical purity to be 96% ee, as established by LISR analysis.

Preparation of ($2 S, 4 R, 5 S, 6 R$)-5-Benzyl-4-[(S)-cyclohexylcarbo-methoxymethoxy)-2,6-phenyl-1,3-dioxane (7). 2k (132 mg, 0.457 mmol , 1.00 equiv), $\mathrm{PhCHO}\left(102 \mu \mathrm{~L}, 1.01 \mathrm{mmol}, 2.20\right.$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) were reacted as per 3b, but with trifluoromethanesulfonic acid (4.10 $\mu \mathrm{L}, 0.0457 \mathrm{mmol}, 0.100$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ as the catalyst and a reaction time of 4 h , to afford, after chromatography (30 g of SiO_{2}, $95: 5$ hexane/EtOAc), 7 ($137 \mathrm{mg}, 60 \%$), $>95 \%$ pure by ${ }^{1} \mathrm{H}$ NMR. Crystallization from pentane at $0^{\circ} \mathrm{C}$ afforded analytically pure material ($96.0 \mathrm{mg}, 42 \%$), $\mathrm{mp} 125^{\circ} \mathrm{C}$, diastereomerically pure ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis. $400-\mathrm{MHz}^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.52-7.01(15 \mathrm{H}, \mathrm{m}), 6.16(1$ $\mathrm{H}, \mathrm{S}), 5.05(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 4.24(1$ $\mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 3.55(3 \mathrm{H}, \mathrm{s}), 2.79(1 \mathrm{H}, \mathrm{dd}, J=14.0,10.4 \mathrm{~Hz}), 2.63$ $(1 \mathrm{H}, \mathrm{tt}, J=10.8,3.2 \mathrm{~Hz}), 2.32(1 \mathrm{H}, \mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}), 1.97-1.23$ ($11 \mathrm{H}, \mathrm{m}$). $101-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.7,139.3,138.1,128.9$, 128.8, 128.5, 128.4, 128.3, 128.0, 127.8, 126.3, 125.7, 96.0, 93.8, 79.9, 78.1, $51.4,47.0,41.1,31.8,29.7,28.7,26.2,26.1,26.0$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{5}$: $\mathrm{C}, 76.77 ; \mathrm{H}, 7.25$. Found: $\mathrm{C}, 76.58 ; \mathrm{H}, 7.35$. A $400 \cdot \mathrm{MHz}$ COSY ${ }^{1} \mathrm{H}$ NMR spectrum (provided as supplementary material) was used to assign resonances and establish that $J_{\mathrm{C}(5) \mathrm{H}-\mathrm{C}(6) \mathrm{H}}=10.8 \mathrm{~Hz}$ and $J_{\mathrm{C}(4) \mathrm{H}-\mathrm{C}(5) \mathrm{H}}=3.2 \mathrm{~Hz}$.
Acknowledgment. We are grateful to the National Institutes of Health (Grant GM40546) for support of this work.

Supplementary Material Available: Four figures containing $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR COSY spectra for 7 and the (R) - and (S)- O-methylmandelate derivatives of 3 f (4 pages). Ordering information is given on any current masthead page.
(26) Lipshultz, B. H.; Harvey, D. F. Synth. Commun. 1982, 12, 267.

[^0]: (1) Reviews: (a) Braun, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 24.
 (b) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. A. Angew. Chem., Int. Ed. Engl. 1985, 24, 1. (c) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 556. (d) Mukaiyama, T. Org. React. (N.Y.) 1982, 28, 203.
 (2) (a) Mukaiyama, T.; Kobayashi, S.; Uchiro, H.; Shiina, I. Chem. Lell. 1990, 129. (b) Bold, G.; Duthaler, R. O.; Riediker, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 497. (c) Oppolzer, W.; Contelles, J. M. Helv. Chim. Acta 1986, 69, 1699. (d) Evans, D. A.; McGee, L. R. J. Am. Chem. Soc. 1981, 103, 2876.
 (3) (a) Corey, E. J.; Kim, S. S. J. Am. Chem. Soc. 1990, 112, 4976. (b) Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J. Am. Chem. Soc. 1990, 112, 2767. (c) Bernardi, A.; Cardani, S.; Carugo, O.; Colombo, L.; Scolastico, C.; Villa, R. Tetrahedron Lell. 1990, 31, 2779. (d) Duplantier, A. J.; Nantz, M. H.; Roberts, J. C.; Short, R. P.; Somfai, P.; Masamune, S. Tetrahedron Lell. 1989, 30, 7357. (e) Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, 111, 5493. (f) Kobayashi, S.; Mukaiyama, T. Chem. Lell. 1989, 297. (g) Paterson, I.; Goodman, J. M. Teirahedron Lell. 1989, 30, 997. (h) Masamune, S.; Sato, T.; Kim, B. M.; Wollmann, T. A. J. Am. Chem. Soc. 1986, 108, 8279. (i) Masamune, S.; Choy, W. Aldrichlm. Acla 1982, 15 (3), 47. (j) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, $103,2127$.
 (4) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092.
 (5) Roush, W. R.; Banfi, L. J. Am. Chem. Soc. 1988, 110, 3979.
 (6) (a) Sawamura, M.; Hamashima, H.; Ito, Y. J. Org. Chem. 1990, 55 , 5935. (b) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.

[^1]: (15) Grisso, B. A.; Faunce, J. A.; Kuhlmann, B.; Losey, E. N.; Mackenzie, P. B., unpublished results.
 (16) Reference 8, supplementary material.
 (17) Holladay, M. W.; Salituro, F. G.; Rich, D. H. J. Med. Chem. 1987, 30, 374.
 (18) Watson, M. B.; Youngson, G. W. J. Chem. Soc. C 1968, 258.

[^2]: (19) Brewster, A. G.; Caulkett, P. W. R. (Imperial Chemical Industries PLC) U.S. Patent 4,567,197, 1986.
 (20) A similar reversal of erythro/threo selectivity has been observed for the corresponding reactions of (achiral) silyl enol ethers with acetals ${ }^{11}$ and aldehydes: Kobayashi, S.; Murakami, M.; Mukaiyama, T. Chem. Lell. 1985, 1535.

